Dynamic Mode Decomposition for Large-Scale Coherent Structure Extraction in Shear Flows

Author(s):  
Duong Nguyen ◽  
Panruo Wu ◽  
Rodolfo Ostilla Monico ◽  
Guoning Chen
Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4886 ◽  
Author(s):  
Yang Yang ◽  
Xiao Liu ◽  
Zhihao Zhang

The current work is focused on investigating the potential of data-driven post-processing techniques, including proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) for flame dynamics. Large-eddy simulation (LES) of a V-gutter premixed flame was performed with two Reynolds numbers. The flame transfer function (FTF) was calculated. The POD and DMD were used for the analysis of the flame structures, wake shedding frequency, etc. The results acquired by different methods were also compared. The FTF results indicate that the flames have proportional, inertial, and delay components. The POD method could capture the shedding wake motion and shear layer motion. The excited DMD modes corresponded to the shear layer flames’ swing and convect motions in certain directions. Both POD and DMD could help to identify the wake shedding frequency. However, this large-scale flame oscillation is not presented in the FTF results. The negative growth rates of the decomposed mode confirm that the shear layer stabilized flame was more stable than the flame possessing a wake instability. The corresponding combustor design could be guided by the above results.


Author(s):  
Susanne Horn ◽  
Peter J. Schmid ◽  
Jonathan M. Aurnou

Abstract The large-scale circulation (LSC) is the most fundamental turbulent coherent flow structure in Rayleigh-B\'enard convection. Further, LSCs provide the foundation upon which superstructures, the largest observable features in convective systems, are formed. In confined cylindrical geometries with diameter-to-height aspect ratios of Γ ≅ 1, LSC dynamics are known to be governed by a quasi-two-dimensional, coupled horizontal sloshing and torsional (ST) oscillatory mode. In contrast, in Γ ≥ √2 cylinders, a three-dimensional jump rope vortex (JRV) motion dominates the LSC dynamics. Here, we use dynamic mode decomposition (DMD) on direct numerical simulation data of liquid metal to show that both types of modes co-exist in Γ = 1 and Γ = 2 cylinders but with opposite dynamical importance. Furthermore, with this analysis, we demonstrate that ST oscillations originate from a tilted elliptical mean flow superposed with a symmetric higher order mode, which is connected to the four rolls in the plane perpendicular to the LSC in Γ = 1 tanks.


Author(s):  
Shubham Agarwal ◽  
Laurent Gicquel ◽  
Florent Duchaine ◽  
Nicolas Odier ◽  
Jérôme Dombard

Abstract Film cooling is a common technique to manage turbine vane and blade thermal environment. Optimizing its cooling efficiency is furthermore an active research topic which goes in hand with a strong knowledge of the flow associated with a cooling hole. The following paper aims at developing deeper understanding of the flow physics associated with a standard cooling hole and helping guide future cooling optimization strategies. For this purpose, Large Eddy Simulations (LES) of the 7-7-7 fan-shaped cooling hole [1] is performed and the flow inside the cooling hole is studied and discussed. Use of mathematical techniques such as the Fast Fourier Transforms (FFT) and Dynamic Mode Decomposition (DMD) is done to quantitatively access the flow modal structure inside the hole based on the LES unsteady predictions. Using these techniques, distinct vortex features inside the cooling hole are captured. These features mainly coincide with the roll-up of the internal shear layer formed at the interface of the separation region at the hole inlet. The topology of these vortex features is discussed in detail and it is also shown how the expansion of the cross-section in case of shaped holes aids in breaking down these vortices. Indeed upon escaping, these large scale features are known to not be always beneficial to film cooling effectiveness.


2010 ◽  
Vol 656 ◽  
pp. 5-28 ◽  
Author(s):  
PETER J. SCHMID

The description of coherent features of fluid flow is essential to our understanding of fluid-dynamical and transport processes. A method is introduced that is able to extract dynamic information from flow fields that are either generated by a (direct) numerical simulation or visualized/measured in a physical experiment. The extracted dynamic modes, which can be interpreted as a generalization of global stability modes, can be used to describe the underlying physical mechanisms captured in the data sequence or to project large-scale problems onto a dynamical system of significantly fewer degrees of freedom. The concentration on subdomains of the flow field where relevant dynamics is expected allows the dissection of a complex flow into regions of localized instability phenomena and further illustrates the flexibility of the method, as does the description of the dynamics within a spatial framework. Demonstrations of the method are presented consisting of a plane channel flow, flow over a two-dimensional cavity, wake flow behind a flexible membrane and a jet passing between two cylinders.


2021 ◽  
Vol 62 (6) ◽  
Author(s):  
C. R. Marshall ◽  
R. M. Dorrell ◽  
G. M. Keevil ◽  
J. Peakall ◽  
S. M. Tobias

AbstractDensity driven flows, also known as gravity currents, comprise a head, body, and tail. Yet whilst the body typically forms the largest part of such flows, its structure remains poorly understood. In this work, experimental data gathered using particle image velocimetry enables the instantaneous, whole-field dynamics of constant-influx solute-based gravity currents to be resolved. While averaged turbulent kinetic energy profiles are comparable to previous work, the instantaneous data sets reveal significant temporal variation, with velocity measurements indicating large-scale wave-like motions within the body. Spectral analysis and dynamic mode decomposition, of streamwise and vertical velocity, are used to identify the frequencies and structures of the dominant motions within the flow. By considering an idealised theoretical density profile, it is suggested that these structures may be internal gravity waves that form a critical layer within the flow located at the height of the maximum internal velocity. Irreversible internal wave breaking that has been postulated to occur at this critical layer suggests formation of internal eddy transport barriers, demonstrating that new dynamic models of turbulent mixing in gravity currents are needed. Graphic abstract


2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Shubham Agarwal ◽  
Laurent Gicquel ◽  
Florent Duchaine ◽  
Nicolas Odier ◽  
Jérôme Dombart

Abstract Film cooling is a common technique to manage turbine vane and blade thermal environment. Optimizing its cooling efficiency is furthermore an active research topic which goes in hand with a strong knowledge of the flow associated with a cooling hole. The following paper aims at developing deeper understanding of the flow physics associated with a standard cooling hole and helping guide future cooling optimization strategies. For this purpose, large eddy simulations (LESs) of the 7-7-7 fan-shaped cooling hole are performed and the flow inside the cooling hole is studied and discussed. Use of mathematical techniques such as the fast Fourier transforms (FFTs) and dynamic mode decomposition (DMD) is done to quantitatively access the flow modal structure inside the hole based on the LES unsteady predictions. Using these techniques, distinct vortex features inside the cooling hole are captured. These features mainly coincide with the roll-up of the internal shear layer formed at the interface of the separation region at the hole-inlet. The topology of these vortex features is discussed in detail and it is also shown how the expansion of the cross section in case of shaped holes aids in breaking down these vortices. Indeed upon escaping, these large-scale features are known to not be always beneficial to film cooling effectiveness.


2021 ◽  
Author(s):  
Frank Kwasniok

<p>This presentation discusses two examples of the use of advanced pattern techniques in weather and climate science. Firstly, optimal mode decomposition (OMD) is employed for linear inverse modelling of large-scale atmospheric flow. The OMD technique determines a low-rank approximation to a high-dimensional dynamical system in terms of a linear empirical model; a set of patterns and a system matrix are identified simultaneously by maximising the explained predictive variance. The method is exemplified on a quasi-geostrophic atmospheric model with realistic mean state and variability. Considerable improvements in prediction skill are observed compared to the traditional approach based on principal components or dynamic mode decomposition (DMD). Secondly, nonlinear principal prediction patterns are used for stochastic subgrid-scale modelling. Pairs of predictor-predictand patterns are determined in the space of the resolved variables and the space of the subgrid forcing, respectively, and linked in a predictive manner. The predictor patterns may contain nonlinear functions of state variables. On top of this deterministic subgrid model the predictand patterns are forced stochastically. The approach is demonstrated on the two-scale Lorenz 1996 system.</p>


Author(s):  
M. Dellacasagrande ◽  
J. Verdoya ◽  
D. Barsi ◽  
D. Lengani ◽  
D. Simoni

Abstract A flat plate boundary layer has been surveyed by means of time-resolved particle image velocimetry (PIV) under variable Reynolds number (70000 < Re < 150000) and turbulence intensity level (1.5% < Tu < 2.5%). The PIV visualizations were completed in two measuring planes, that are oriented both normal and parallel to the wall. For the wall-parallel configuration, the measuring plane is located inside the boundary layer. The PIV data were post-processed by applying Dynamic Mode Decomposition (DMD), which provides frequency based modes and their corresponding growth rate. The effects of Re and Tu variation on the amplification of the dominant wavelength within the separated shear layer, which is responsible for transition, is the main subject of the present work. The DMD modes and related eigenvalues were computed with reference to the main streamwise coordinate. This allowed discussing the effects due to the main flow parameters on the amplification of the dominant streamwise wavelengths within the separated shear layer (Kelvin-Helmholtz modes). The growth of such streamwise modes ends with the formation of large scale vortices, whose breakup forces transition. In order to obtain the effective distribution of the maximum growth rate of fluctuations at different locations and times, the DMD domain was continuously extended in the streamwise direction, accounting for a specified number of periods characterizing the large scale K-H vortices. In order to reduce the time-space dependent results obtained by the DMD procedure, a probability density function of the most unstable wavelength and the corresponding growth rate has been computed. For the present data set, the spatial growth rate of fluctuations is found to increase at the higher Reynolds number, while it slightly reduces with increasing the Tu level. The procedure and findings discussed in this work shall be suitable for designing active control systems, such as harmonic blowing for separation control.


Sign in / Sign up

Export Citation Format

Share Document