On uplink CDMA cell capacity: mutual coupling and scattering effects on beamforming

2003 ◽  
Vol 52 (2) ◽  
pp. 289-304 ◽  
Author(s):  
A.M. Wyglinski ◽  
S.D. Blostein
Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
B. B. Chang ◽  
D. F. Parsons

The significance of dynamical scattering effects remains the major question in the structural analysis by electron diffraction of protein crystals preserved in the hydrated state. In the few cases (single layers of purple membrane and 400-600 Å thick catalase crystals examined at 100 kV acceleration voltage) where electron-diffraction patterns were used quantitatively, dynamical scattering effects were considered unimportant on the basis of a comparison with x-ray intensities. The kinematical treatment is usually justified by the thinness of the crystal. A theoretical investigation by Ho et al. using Cowley-Moodie multislice formulation of dynamical scattering theory and cytochrome b5as the test object2 suggests that kinematical analysis of electron diffraction data with 100-keV electrons would not likely be valid for specimen thickness of 300 Å or more. We have chosen to work with electron diffraction patterns obtained from actual wet protein crystals (rat hemoglobin crystals of thickness range 1000 to 2500 Å) at 200 and 1000 kV and to analyze these for dynamical effects.


1986 ◽  
Vol 47 (C8) ◽  
pp. C8-589-C8-592
Author(s):  
N. BINSTED ◽  
S. L. COOK ◽  
J. EVANS ◽  
R. J. PRICE ◽  
G. N. GREAVES

2011 ◽  
Vol 57 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Mariusz Zamłyński ◽  
Piotr Słobodzian

Influence of the Aperture Edge Diffraction Effects on the Mutual Coupling Compensation Technique in Small Planar Antenna Arrays In this paper the quality of a technique to compensate for mutual coupling (and other phenomena) in small linear antenna arrays is investigated. The technique consists in calculation of a coupling matrix, which is than used to determine corrected antenna array excitation coefficients. Although the technique is known for more than 20 years, there is still very little information about how different phenomena existing in a real antenna arrays influence its performance. In this paper two models of antenna arrays are used. In the first model the effect of mutual coupling is separated from the aperture edge diffraction. In the second model antenna both mutual coupling and aperture edge diffraction effects are included. It is shown that mutual coupling itself can be compensated very well and an ultralow sidelobe level (i.e. -50 dB) could be achieved in practice. In the presence of diffraction effects -46.3 dB sidelobe level has been attained, but radiation pattern can be controled only in narrow angle range (i.e. up to ±60°).


1992 ◽  
Author(s):  
SHIAN HWU ◽  
LARRY JOHNSON ◽  
JON FOURNET ◽  
ROBERT PANNETON ◽  
DONALD EGGERS ◽  
...  

2014 ◽  
Vol 3 (3) ◽  
pp. 28-32
Author(s):  
C. Mekala ◽  
◽  
P. Saranya ◽  
V. Sathya Narayanan ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document