Electron crystallographic determination of the 3-D structure of staurolite at atomic resolution

Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.

Author(s):  
H. Kohl

High-Resolution Electron Microscopy is able to determine structures of crystals and interfaces with a spatial resolution of somewhat less than 2 Å. As the image is strongly dependent on instrumental parameters, notably the defocus and the spherical aberration, the interpretation of micrographs necessitates a comparison with calculated images. Whereas one has often been content with a qualitative comparison of theory with experiment in the past, one is currently striving for quantitative procedures to extract information from the images [1,2]. For the calculations one starts by assuming a static potential, thus neglecting inelastic scattering processes.We shall confine the discussion to periodic specimens. All electrons, which have only been elastically scattered, are confined to very few directions, the Bragg spots. In-elastically scattered electrons, however, can be found in any direction. Therefore the influence of inelastic processes on the elastically (= Bragg) scattered electrons can be described as an attenuation [3]. For the calculation of high-resolution images this procedure would be correct only if we had an imaging energy filter capable of removing all phonon-scattered electrons. This is not realizable in practice. We are therefore forced to include the contribution of the phonon-scattered electrons.


1991 ◽  
Vol 238 ◽  
Author(s):  
Geoffrey H. Campbells ◽  
Wayne E. King ◽  
Stephen M. Foiles ◽  
Peter Gumbsch ◽  
Manfred Rühle

ABSTRACTA (310) twin boundary in Nb has been fabricated by diffusion bonding oriented single crystals and characterized using high resolution electron microscopy. Atomic structures for the boundary have been predicted using different interatomic potentials. Comparison of the theoretical models to the high resolution images has been performed through image simulation. On the basis of this comparison, one of the low energy structures predicted by theory can be ruled out.


1984 ◽  
Vol 41 ◽  
Author(s):  
W. Krakow ◽  
J. T. Wetzel ◽  
D. A. Smith ◽  
G. Trafas

AbstractA high resolution electron microscope study of grain boundary structures in Au thin films has been undertaken from both a theoretical and experimental point of view. The criteria necessary to interpret images of tilt boundaries at the atomic level, which include electron optical and specimen effects, have been considered for both 200kV and the newer 400kV medium voltage microscopes. So far, the theoretical work has concentrated on two different [001] tilt bounda-ries where a resolution of 2.03Å is required to visualize bulk lattice structures on either side of the interface. Both a high angle boundary, (210) σ=5, and a low angle boundary, (910) σ=41, have been considered. Computational results using multislice dynamical diffraction and image simulations of relaxed bounda-ries viewed edge-on and with small amounts of beam and/or specimen inclina-tion have been obtained. It will be shown that some structural information concerning grain boundary dislocations can be observed at 200kV. However, many difficulties occur in the exact identification of the interface structure viewed experimentally for both [001] and [011] boundaries since the resolution required is near the performance limit of a 200kV microscope. The simulated results at 400kV indicate a considerable improvement will be realized in obtain-ing atomic structure information at the interface.


1988 ◽  
Vol 02 (06) ◽  
pp. 835-839 ◽  
Author(s):  
M. HERVIEU ◽  
B. DOMENGES ◽  
C. MICHEL ◽  
B. RAVEAU

The new superconductor Bi 2 Sr 2 CaCu 2 O 8+δ with T c ranging from 80 to 105K, was studied by electron microscopy. The electron diffraction study shows a pseudo-tetragonal symmetry with a≈b≈5.4 Å and c≈30.7 Å and satellites along a, which settle in an incommensurate way. The high resolution images agree with the proposed basic structure. The stacking of the ( BiO y)2 and [ Sr 2 CaCu 2 O 6] layers is quite regular, with only some defects corresponding to c≈24 Å. The lamellar character of the oxide results in splitting and bending of the crystals.


2001 ◽  
Vol 16 (1) ◽  
pp. 101-107 ◽  
Author(s):  
Takeo Oku ◽  
Jan-Olov Bovin ◽  
Iwami Higashi ◽  
Takaho Tanaka ◽  
Yoshio Ishizawa

Atomic positions for Y atoms were determined by using high-resolution electron microscopy and electron diffraction. A slow-scan charge-coupled device camera which had high linearity and electron sensitivity was used to record high-resolution images and electron diffraction patterns digitally. Crystallographic image processing was applied for image analysis, which provided more accurate, averaged Y atom positions. In addition, atomic disordering positions in YB56 were detected from the differential images between observed and simulated images based on x-ray data, which were B24 clusters around the Y-holes. The present work indicates that the structure analysis combined with digital high-resolution electron microscopy, electron diffraction, and differential images is useful for the evaluation of atomic positions and disordering in the boron-based crystals.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1139-1140
Author(s):  
D. Van Dyck

The ultimate goal of high resolution electron microscopy is to determine quantitatively the atomic structure of an object. In this respect the electron microscope can be considered as an information channel that carries this information from the object to the observer. High resolution images are then to be considered as data planes from which the structural information has to be extracted.However this structural information is usually hidden in the images and cannot easily be assessed. Therefore, a quantitative approach is required in which all steps in the imaging process are taken into account. Two main approaches have been followed so far in the literature: the indirect approach in which the images are simulated for various plausible trial structures of the object and compared with the experimental images, and the direct approach in which the lost phase information is retrieved using holographic techniques so as to “deblur” the effect of the microscope and to reveal directly the atomic structure of the object.


Author(s):  
Z. G. Li ◽  
L. Liang ◽  
P.J. Fagan ◽  
M. van Kavelaar

Following the discovery of a large scale synthesis of fullerenes, the existence of the related carbon nanotubes was suggested by high resolution electron microscopy (HREM). Larger scale syntheses of these nanotube-rich materials has now been reported and has sparked interest worldwide. Because the HREM technique essentially observes the projection of a three dimensional object onto a two-dimensional plane, the three dimensional shape of the object is usually not apparent in typical HREM images. However, as we report here, by rotating along the axis of single carbon nanotube, and recording the images in succession by HREM, the non-cylindrical nature of these tubes is revealed, especially near the sealed ends of the nanotubes. In addition, from electon diffraction and X-ray diffraction, we find the spacing between the planes to be 3.398(8) Å on average. This is in contrast to earlier reports which suggested an interlayer distance of 3.35 Å, similar to the graphite interplanar spacing.


Sign in / Sign up

Export Citation Format

Share Document