Sensor Selection and Optimal Energy Detection Threshold for Efficient Cooperative Spectrum Sensing

2015 ◽  
Vol 64 (4) ◽  
pp. 1565-1577 ◽  
Author(s):  
Ataollah Ebrahimzadeh ◽  
Maryam Najimi ◽  
Seyed Mehdi Hosseini Andargoli ◽  
Afshin Fallahi
Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 631
Author(s):  
Josip Lorincz ◽  
Ivana Ramljak ◽  
Dinko Begušić

Due to the capability of the effective usage of the radio frequency spectrum, a concept known as cognitive radio has undergone a broad exploitation in real implementations. Spectrum sensing as a core function of the cognitive radio enables secondary users to monitor the frequency band of primary users and its exploitation in periods of availability. In this work, the efficiency of spectrum sensing performed with the energy detection method realized through the square-law combining of the received signals at secondary users has been analyzed. Performance evaluation of the energy detection method was done for the wireless system in which signal transmission is based on Multiple-Input Multiple-Output—Orthogonal Frequency Division Multiplexing. Although such transmission brings different advantages to wireless communication systems, the impact of noise variations known as noise uncertainty and the inability of selecting an optimal signal level threshold for deciding upon the presence of the primary user signal can compromise the sensing precision of the energy detection method. Since the energy detection may be enhanced by dynamic detection threshold adjustments, this manuscript analyses the influence of detection threshold adjustments and noise uncertainty on the performance of the energy detection spectrum sensing method in single-cell cognitive radio systems. For the evaluation of an energy detection method based on the square-law combining technique, the mathematical expressions of the main performance parameters used for the assessment of spectrum sensing efficiency have been derived. The developed expressions were further assessed by executing the algorithm that enabled the simulation of the energy detection method based on the square-law combining technique in Multiple-Input Multiple-Output—Orthogonal Frequency Division Multiplexing cognitive radio systems. The obtained simulation results provide insights into how different levels of detection threshold adjustments and noise uncertainty affect the probability of detection of primary user signals. It is shown that higher signal-to-noise-ratios, the transmitting powers of primary user, the number of primary user transmitting and the secondary user receiving antennas, the number of sampling points and the false alarm probabilities improve detection probability. The presented analyses establish the basis for understanding the energy detection operation through the possibility of exploiting the different combinations of operating parameters which can contribute to the improvement of spectrum sensing efficiency of the energy detection method.


Author(s):  
Deepti Kakkar ◽  
Mayank Gupta ◽  
Arun Khosla ◽  
Moin Uddin

This chapter discusses the detection performance of relay based cognitive radio networks. Relays are assigned in cognitive radio networks to transmit the primary user’s signal to cognitive coordinators or CPUs, thus achieving cooperative spectrum sensing. The purpose of the chapter is to provide mathematical analysis of energy detectors for dual hop networks. The soft fusion rule is used at the relays which acts as amplify and forward relays. For the detection purpose, the energy detector is employed at the cognitive coordinator. In the ending sections, sensing performance is analyzed for different fading channels in the MATLAB environment and simulation results present comparative performance of various relay conditions with concluding remarks.


Sign in / Sign up

Export Citation Format

Share Document