scholarly journals Effective Capacity and Power Allocation for Machine-Type Communication

2019 ◽  
Vol 68 (4) ◽  
pp. 4098-4102 ◽  
Author(s):  
Mohammad Shehab ◽  
Hirley Alves ◽  
Matti Latva-aho
2018 ◽  
Vol 14 (5) ◽  
pp. 155014771877821 ◽  
Author(s):  
Shujun Han ◽  
Xiaodong Xu ◽  
Litong Zhao ◽  
Xiaofeng Tao

Non-orthogonal multiple access is an essential promising solution to support large-scale connectivity required by massive machine-type communication scenario defined in the fifth generation (5G) mobile communication system. In this article, we study the problem of energy minimization in non-orthogonal multiple access–based massive machine-type communication network. Focusing on the massive machine-type communication scenario and assisted by grouping method, we propose an uplink cooperative non-orthogonal multiple access scheme with two phases, transmission phase and cooperation phase, for one uplink cooperative transmission period. Based on uplink cooperative non-orthogonal multiple access, the machine-type communication device with better channel condition and more residual energy will be selected as a group head, which acts as a relay assisting other machine-type communication devices to communicate. In the transmission phase, machine-type communication devices transmit data to the group head. Then, the group head transmits the received data with its own data to base station in the cooperation phase. Because the massive machine-type communication devices are low-cost dominant with limited battery, based on uplink cooperative non-orthogonal multiple access, we propose a joint time and power allocation algorithm to minimize the system energy consumption. Furthermore, the proposed joint time and power allocation algorithm includes dynamic group head selection and fractional transmit time allocation algorithms. Simulation results show that the proposed solution for uplink cooperative non-orthogonal multiple access–based massive machine-type communication network outperforms other schemes.


Author(s):  
Xu Chen ◽  
Zhiyong Feng ◽  
Zhiqing Wei ◽  
Ping Zhang ◽  
Xin Yuan

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7336
Author(s):  
Mincheol Paik ◽  
Haneul Ko

Frequent location updates of individual Internet of Things (IoT) devices can cause several problems (e.g., signaling overhead in networks and energy depletion of IoT devices) in massive machine type communication (mMTC) systems. To alleviate these problems, we design a distributed group location update algorithm (DGLU) in which geographically proximate IoT devices determine whether to conduct the location update in a distributed manner. To maximize the accuracy of the locations of IoT devices while maintaining a sufficiently small energy outage probability, we formulate a constrained stochastic game model. We then introduce a best response dynamics-based algorithm to obtain a multi-policy constrained Nash equilibrium. From the evaluation results, it is demonstrated that DGLU can achieve an accuracy of location information that is comparable with that of the individual location update scheme, with a sufficiently small energy outage probability.


2017 ◽  
pp. 127-144
Author(s):  
Hüsnü Yıldız ◽  
Adnan Kılıç ◽  
Ertan Onur

Sign in / Sign up

Export Citation Format

Share Document