Component-Level Fault Detection for Suspension System of Maglev Trains Based on Autocorrelation Length and Stable Kernel Representation

2021 ◽  
Vol 70 (8) ◽  
pp. 7594-7604
Author(s):  
Ping Wang ◽  
Zhiqiang Long ◽  
Yunsong Xu
Author(s):  
Jaychandar Muthu ◽  
Kanak Soundrapandian ◽  
Jyoti Mukherjee

For suspension components, bench testing for strength is mostly accomplished at component level. However, replicating loading and boundary conditions at the component level in order to simulate the suspension system environment may be difficult. Because of this, the component's bench test failure mode may not be similar to its real life failure mode in vehicle environment. A suspension system level bench test eliminates most of the discrepancies between simulated component level and real life vehicle level environments resulting in higher quality bench tests yielding realistic test results. Here, a suspension level bench test to estimate the strength of its trailing arm link is presented. A suspension system level nonlinear finite element model was built and analyzed using ABAQUS software. The strength loading was applied at the wheel end. The analysis results along with the hardware test correlations are presented. The reasons why a system level test is superior to a component level one are also highlighted.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 134290-134302 ◽  
Author(s):  
Xu Zhou ◽  
Ping Wang ◽  
Zhiqiang Long

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Yimin Chen ◽  
Jin Wen

Faults, i.e., malfunctioned sensors, components, control, and systems, in a building have significantly adverse impacts on the building’s energy consumption and indoor environment. To date, extensive research has been conducted on the development of component level fault detection and diagnosis (FDD) for building systems, especially the Heating, Ventilating, and Air Conditioning (HVAC) system. However, for faults that have multi-system impacts, component level FDD tools may encounter high false alarm rate due to the fact that HVAC subsystems are often tightly coupled together. Hence, the detection and diagnosis of whole building faults is the focus of this study. Here, a whole building fault refers to a fault that occurs in one subsystem but triggers abnormalities in other subsystems and have significant adverse whole building energy impact. The wide adoption of building automation systems (BAS) and the development of machine learning techniques make it possible and cost-efficient to detect and diagnose whole building faults using data-driven methods. In this study, a whole building FDD strategy which adopts weather and schedule information based pattern matching (WPM) method and feature based Principal Component Analysis (FPCA) for fault detection, as well as Bayesian Networks (BNs) based method for fault diagnosis is developed. Fault tests are implemented in a real campus building. The collected data are used to evaluate the performance of the proposed whole building FDD strategies.


2009 ◽  
Vol 42 (8) ◽  
pp. 1426-1431 ◽  
Author(s):  
P. Gáspár ◽  
Z. Szabó ◽  
J. Bokor

Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1836
Author(s):  
Shi Liang ◽  
Jiewei Zeng

During actual engineering, due to the influence of complex operation conditions, the data of complex systems are distinct, and the range of similarity differs under complex operation conditions. Simultaneously, the length of the data used to calculate the similarity will also impact the result of the fault detection. According to these, this paper proposes a fault detection method based on correlation analysis and improved similarity. In the first place, the complex operation conditions are divided into several simple operation conditions via the existing historical data. In the next place, the length of the data used to calculate the similarity is determined by correlation analysis. Then, an improved similarity calculation method is proposed to make the range of the similarity under multi-operation conditions identical. Finally, this method is applied to the suspension system of the maglev train. The experiment results indicate that the method proposed in this paper can not only detect the fault or abnormal state of the suspension system but also observe the health index (HI) changes of the system at distinct times under multi-operation conditions.


Author(s):  
Yimin Chen ◽  
Jin Wen ◽  
L. James Lo

Abstract A whole building fault (WBF) refers to a fault occurring in one component, but may cause impacts on other components or subsystems, or arise impacts of significant energy consumption and thermal comfort. Conventional methods which targeted at the component level fault detection cannot be successfully employed to detect a WBF because of the fault propagation among the closely coupled equipment or subsystems. Therefore, a novel data-driven method named weather and schedule-based pattern matching (WPM) and feature based principal component analysis (FPCA) method for WBF detection is developed. Three processes are established in the WPM-FPCA method to address three main issues in the WBF detection. First, a feature selection process is used to pre-select data measurements which represent a whole building's operation performance under a satisfied status, namely baseline status. Secondly, a WPM process is employed to locate weather and schedule patterns in the historical baseline database, that are similar to that from the current/incoming operation data, and to generate a WPM baseline. Lastly, PCA models are generated for both the WPM baseline data and the current operation data. Statistic thresholds used to differentiate normal and abnormal (faulty) operations are automatically generated in this PCA modeling process. The PCA models and thresholds are used to detect WBF. This paper is the first of a two-part study. Performance evaluation of the developed method is conducted using data collected from a real campus building and will be described in the second part of this paper.


Sign in / Sign up

Export Citation Format

Share Document