scholarly journals An Adaptive Transmission Scheme for Cognitive Decode-and-Forward Relaying Networks: Half Duplex, Full Duplex, or No Cooperation

2016 ◽  
Vol 15 (8) ◽  
pp. 5586-5602 ◽  
Author(s):  
Edgar Eduardo Benitez Olivo ◽  
Diana Pamela Moya Osorio ◽  
Hirley Alves ◽  
Jose Candido Silveira Santos Filho ◽  
Matti Latva-aho
Author(s):  
Diana Pamela Moya Osorio ◽  
Edgar Eduardo Benitez Olivo ◽  
Hirley Alves ◽  
Jose Candido Santos Filho ◽  
Matti Latva-aho

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1293 ◽  
Author(s):  
Chi-Bao Le ◽  
Dinh-Thuan Do ◽  
Miroslav Voznak

In this paper, a cooperative non-orthogonal multiple access (NOMA) system is studied for the Internet-of-Things (IoT) in which a master node intends to serve multiple client nodes. The adaptive transmission strategy is proposed at the relay node, i.e., the relay can be half-duplex (HD) and/or full duplex (FD). In practical terms, numerous low-cost devices are deployed in such IoT systems and it exhibits degraded performance due to hardware imperfections. In particular, the effects of hardware impairments in the NOMA users are investigated. Specifically, the closed-form expressions are derived for the outage probability. Moreover, the ergodic capacity is also analysed. This study also comparatively analyzes the orthogonal multiple access (OMA) and NOMA with HD and/or FD relaying. The numerical results are corroborated through Monte Carlo simulations.


2021 ◽  
Author(s):  
Binod Prasad ◽  
Gopal Chandra Das ◽  
Srinivas Nallagonda ◽  
Seemanti Saha ◽  
Abhijit Bhowmick

Abstract The performance of a relay based Half-Duplex (HD) and Full-Duplex (FD) cooperative cognitive radio (CR) network with a RF energy harvesting (EH) is studied in this paper. Co-operative environment includes a network with multiple primary users (PUs), and CRs. The relay node is considered as an EH node which harvests energy (HE) from RF signal (RFS) of source and loop-back interference. The network performance is studied for instantaneous transmission and delay constraint transmission for decode and forward (DF) relaying protocol. The performance is investigated under a relay energy outage constraint and the expression of throughput is redesigned. Expressions of energy outage, data outage and throughput for HD and FD are developed. The impact of several parameters such as transmitting SNR, fractional harvesting time parameter, fractional transmission time parameter, and loop-back interference on the system throughput has been investigated.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1845 ◽  
Author(s):  
Thanh-Nam Tran ◽  
Miroslav Voznak

This article studied the application of multiple protocol switching mechanism (PSM) over cooperating Non-Orthogonal Multiple Access (NOMA) networks to minimize the probability of outage and maximize the system throughput and energy efficiency (EE). This study investigated six scenarios: (1) a cooperative NOMA system with half-duplex (HD) and decode-and-forward (DF) protocols at the relay; (2) a cooperative NOMA system with full-duplex (FD) and DF protocols at the relay; (3) a cooperative NOMA system with HD and amplification amplify-and-forward (AF) with fixed-gain (FG) protocols at the relay; (4) a cooperative NOMA system with HD and amplification AF with variable-gain (VG) protocols at the relay; (5) a cooperative NOMA system with FD and amplification AF with FG protocols at the relay; (6) a cooperative NOMA system with FD and amplification AF with VG protocols at the relay. Based on the results of analysis and simulations, the study determined the transmission scenario for best system performance. This paper also proposed a mechanism to switch between HD/FD and DF/AF with FG/VG protocols in order to improve the quality of service (QoS) for users with a weak conditional channel. This mechanism can be deployed in future 5G wireless network sensors. Finally, EE was also assessed in relation to future green-wireless networks (G-WNs).


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1222
Author(s):  
Phat Huynh ◽  
Khoa T. Phan ◽  
Bo Liu ◽  
Robert Ross

In this paper, we investigated a buffer-aided decode-and-forward (DF) wireless relaying system over fading channels, where the source and relay harvest radio-frequency (RF) energy from a power station for data transmissions. We derived exact expressions for end-to-end throughput considering half-duplex (HD) and full-duplex (FD) relaying schemes. The numerical results illustrate the throughput and energy efficiencies of the relaying schemes under different self-interference (SI) cancellation levels and relay deployment locations. It was demonstrated that throughput-optimal relaying is not necessarily energy efficiency-optimal. The results provide guidance on optimal relaying network deployment and operation under different performance criteria.


Sign in / Sign up

Export Citation Format

Share Document