scholarly journals HD/FD and DF/AF with Fixed-Gain or Variable-Gain Protocol Switching Mechanism over Cooperative NOMA for Green-Wireless Networks

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1845 ◽  
Author(s):  
Thanh-Nam Tran ◽  
Miroslav Voznak

This article studied the application of multiple protocol switching mechanism (PSM) over cooperating Non-Orthogonal Multiple Access (NOMA) networks to minimize the probability of outage and maximize the system throughput and energy efficiency (EE). This study investigated six scenarios: (1) a cooperative NOMA system with half-duplex (HD) and decode-and-forward (DF) protocols at the relay; (2) a cooperative NOMA system with full-duplex (FD) and DF protocols at the relay; (3) a cooperative NOMA system with HD and amplification amplify-and-forward (AF) with fixed-gain (FG) protocols at the relay; (4) a cooperative NOMA system with HD and amplification AF with variable-gain (VG) protocols at the relay; (5) a cooperative NOMA system with FD and amplification AF with FG protocols at the relay; (6) a cooperative NOMA system with FD and amplification AF with VG protocols at the relay. Based on the results of analysis and simulations, the study determined the transmission scenario for best system performance. This paper also proposed a mechanism to switch between HD/FD and DF/AF with FG/VG protocols in order to improve the quality of service (QoS) for users with a weak conditional channel. This mechanism can be deployed in future 5G wireless network sensors. Finally, EE was also assessed in relation to future green-wireless networks (G-WNs).

2021 ◽  
Author(s):  
Binod Prasad ◽  
Gopal Chandra Das ◽  
Srinivas Nallagonda ◽  
Seemanti Saha ◽  
Abhijit Bhowmick

Abstract The performance of a relay based Half-Duplex (HD) and Full-Duplex (FD) cooperative cognitive radio (CR) network with a RF energy harvesting (EH) is studied in this paper. Co-operative environment includes a network with multiple primary users (PUs), and CRs. The relay node is considered as an EH node which harvests energy (HE) from RF signal (RFS) of source and loop-back interference. The network performance is studied for instantaneous transmission and delay constraint transmission for decode and forward (DF) relaying protocol. The performance is investigated under a relay energy outage constraint and the expression of throughput is redesigned. Expressions of energy outage, data outage and throughput for HD and FD are developed. The impact of several parameters such as transmitting SNR, fractional harvesting time parameter, fractional transmission time parameter, and loop-back interference on the system throughput has been investigated.


Author(s):  
Tan N. Nguyen ◽  
Minh Tran ◽  
Van-Duc Phan ◽  
Hoang-Nam Nguyen ◽  
Thanh-Long Nguyen

<p>In this work, the half-duplex (HF) power beacon-assisted (PB) energy harvesting (EH) relaying network, which consists of a source (S), Relay (R), destination (D) and a power beacon (PB) are introduced and investigated. Firstly, the analytical expressions of the system performance in term of outage probability (OP) and the system throughput (ST) are analyzed and derived in both amplify-and-forward (AF) and decode-and-forward (DF) modes. After that, we verify the correctness of the analytical analysis by using Monte-Carlo simulation in connection with the primary system parameters. From the numerical results, we can see that all the analytical and the simulation results are matched well with each other.</p>


Author(s):  
R. Rajesh ◽  
P. G. S. Velmurugan ◽  
S. J. Thiruvengadam ◽  
P. S. Mallick

In this paper, a bidirectional full-duplex amplify- and-forward (AF) relay network with multiple antennas at source nodes is proposed. Assuming that the channel state information is known at the source nodes, transmit antenna selection and maximal ratio combining (MRC) are employed when source nodes transmit information to the relay node and receive information from the relay node respectively, in order to improve the overall signal-to-interference plus noise ratio (SINR). Analytical expressions are derived for tight upper bound SINR at the relay node and source nodes upon reception. Further, losed form expressions are also derived for end-to-end outage probability of the proposed bidirectional full-duplex AF relay network in the Nakagami-m fading channel environment. Although self-interference at the relay node limits the performance of the full-duplex network, the outage performance of the proposed network is better than that of conventional bidirectional full-duplex and half-duplex AF relay networks, due to the selection diversity gain in TAS and diversity and array gain in MRC.


2018 ◽  
Vol 17 (5) ◽  
pp. 1076-1089 ◽  
Author(s):  
Wessam Afifi ◽  
Mohammad J. Abdel-Rahman ◽  
Marwan Krunz ◽  
Allen B. MacKenzie

2016 ◽  
Vol 15 (8) ◽  
pp. 5586-5602 ◽  
Author(s):  
Edgar Eduardo Benitez Olivo ◽  
Diana Pamela Moya Osorio ◽  
Hirley Alves ◽  
Jose Candido Silveira Santos Filho ◽  
Matti Latva-aho

2020 ◽  
Vol 10 (2) ◽  
pp. 9-17
Author(s):  
Tuan Nhu Nguyen

Abstract— To secure communication from the sender to the receiver in wireless networks, cryptographic algorithms are usually used to encrypt data at the upper layers of a multi-tiered transmission model. Another emerging trend in the security of data transmitted over wireless networks is the physical layer security based on beamforming and interference fading  communication technology and not using cryptographic algorithms. This trend has attracted increasing concerns from both academia and industry. This paper addresses how physical layer security can protect secret data compare with the traditional cryptographic encryption and which is the better cooperative relaying scheme with the state of the art approached methods in wireless relaying beamforming network.Tóm tắt— Việc bảo mật truyền thông vô tuyến từ nơi gửi đến nơi nhận thường sử dụng các thuật toán mật mã để mã hoá dữ liệu tại các tầng phía trên trong mô hình phân lớp. Một xu hướng khác đang được quan tâm rộng rãi là bảo mật tầng vật lý dựa trên kỹ thuật truyền tin beamforming và kỹ thuật tương tác fading kênh chủ động. Xu hướng này hiện đang được thu hút cả trong giới công nghiệp và nghiên cứu. Đóng góp của bài báo này là làm rõ khả năng bảo mật tầng vật lý và so sách chúng với phương pháp bảo mật dùng kỹ thuật mật mã truyền thống. Bài báo cũng so sánh hai kỹ thuật chuyển tiếp được sử dụng chính trong bảo mật tầng vật lý cho mạng vô tuyến chuyển tiếp là Amplify-and-Forward và Decode-and-Forward.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Rongyi Hu ◽  
Chunjing Hu ◽  
Jiamo Jiang ◽  
Xinqian Xie ◽  
Lei Song

This paper investigates the outage probability and ergodic capacity performances for full-duplex mode in two-way amplify-and-forward relay channels. The two-way relay channels which consist of two source nodes and a single relay node working in full-duplex mode, are assumed as independent and identically distributed as Rayleigh fading. The self-interference or loop interference of the relay is unavoidably investigated for full-duplex mode. And the close-form expressions for the outage probability and ergodic capacity of full-duplex mode are derived, considering both loop interference and the coefficients of two-way relay amplify-and-forward channels. To further facilitate the performance of full-duplex mode, the half-duplex modes over different transmission time slots are analyzed. Simulation results point out the effect of loop interference on outage probability and ergodic capacity of two-way amplify-and-forward relay channels with full-duplex mode and show that full-duplex mode can achieve better performance in terms of capacity and even outperform half-duplex modes in the presence of loop interference.


Sign in / Sign up

Export Citation Format

Share Document