An experimental comparison of software effort estimation methods of ORM based 4GL software applications

Author(s):  
Muhammed Tanriverdi ◽  
O. Ozgur Tanriover
Author(s):  
Fatih Yücalar ◽  
Deniz Kilinc ◽  
Emin Borandag ◽  
Akin Ozcift

Estimating the development effort of a software project in the early stages of the software life cycle is a significant task. Accurate estimates help project managers to overcome the problems regarding budget and time overruns. This paper proposes a new multiple linear regression analysis based effort estimation method, which has brought a different perspective to the software effort estimation methods and increased the success of software effort estimation processes. The proposed method is compared with standard Use Case Point (UCP) method, which is a well-known method in this area, and simple linear regression based effort estimation method developed by Nassif et al. In order to evaluate and compare the proposed method, the data of 10 software projects developed by four well-established software companies in Turkey were collected and datasets were created. When effort estimations obtained from datasets and actual efforts spent to complete the projects are compared with each other, it has been observed that the proposed method has higher effort estimation accuracy compared to the other methods.


2021 ◽  
Vol 12 (04) ◽  
pp. 01-18
Author(s):  
Tharwon Arnuphaptrairong

Literature review shows that more accurate software effort and cost estimation methods are needed for software project management success. Expert judgment and algorithmic model estimation are two predominant methods discussed in the literature. Both are reported almost at the comparable level of accuracy performance. The combination of the two methods is suggested to increase the estimation accuracy. Delphi method is an encouraging structured expert judgment method for software effort group estimation but surprisingly little was reported in the literature. The objective of this study is to test if the Delphi estimates will be more accurate if the participants in the Delphi process are exposed to the algorithmic estimates. A Delphi experiment where the participants in the Delphi process were exposed to three algorithmic estimates –Function Points, COCOMO estimates, and Use Case Points, was therefore conducted. The findings show that the Delphi estimates are slightly more accurate than the statistical combination of individual expert estimates, but they are not statistically significant. However, the Delphi estimates are statistically significant more accurate than the individual estimates. The results also show that the Delphi estimates are slightly less optimistic than the statistical combination of individual expert estimates but they are not statistically significant either. The adapted Delphi experiment shows a promising technique for improving the software cost estimation accuracy.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1195
Author(s):  
Priya Varshini A G ◽  
Anitha Kumari K ◽  
Vijayakumar Varadarajan

Software Project Estimation is a challenging and important activity in developing software projects. Software Project Estimation includes Software Time Estimation, Software Resource Estimation, Software Cost Estimation, and Software Effort Estimation. Software Effort Estimation focuses on predicting the number of hours of work (effort in terms of person-hours or person-months) required to develop or maintain a software application. It is difficult to forecast effort during the initial stages of software development. Various machine learning and deep learning models have been developed to predict the effort estimation. In this paper, single model approaches and ensemble approaches were considered for estimation. Ensemble techniques are the combination of several single models. Ensemble techniques considered for estimation were averaging, weighted averaging, bagging, boosting, and stacking. Various stacking models considered and evaluated were stacking using a generalized linear model, stacking using decision tree, stacking using a support vector machine, and stacking using random forest. Datasets considered for estimation were Albrecht, China, Desharnais, Kemerer, Kitchenham, Maxwell, and Cocomo81. Evaluation measures used were mean absolute error, root mean squared error, and R-squared. The results proved that the proposed stacking using random forest provides the best results compared with single model approaches using the machine or deep learning algorithms and other ensemble techniques.


Sign in / Sign up

Export Citation Format

Share Document