Utilizing Wi-Fi Access Points for Unmanned Aerial Vehicle Localization for Building Indoor Inspection

Author(s):  
Mohammed Sulaiman ◽  
Ali Abdullah S. AlQahtani ◽  
Hexu Liu ◽  
Mohamed Binalhaj
2019 ◽  
Vol 16 (1) ◽  
pp. 172988141882022 ◽  
Author(s):  
Jiang Bian ◽  
Xiaolong Hui ◽  
Xiaoguang Zhao ◽  
Min Tan

Employing unmanned aerial vehicles to conduct close proximity inspection of transmission tower is becoming increasingly common. This article aims to solve the two key problems of close proximity navigation—localizing tower and simultaneously estimating the unmanned aerial vehicle positions. To this end, we propose a novel monocular vision–based environmental perception approach and implement it in a hierarchical embedded unmanned aerial vehicle system. The proposed framework comprises tower localization and an improved point–line-based simultaneous localization and mapping framework consisting of feature matching, frame tracking, local mapping, loop closure, and nonlinear optimization. To enhance frame association, the prominent line feature of tower is heuristically extracted and matched followed by the intersections of lines are processed as the point feature. Then, the bundle adjustment optimization leverages the intersections of lines and the point-to-line distance to improve the accuracy of unmanned aerial vehicle localization. For tower localization, a transmission tower data set is created and a concise deep learning-based neural network is designed to perform real-time and accurate tower detection. Then, it is in combination with a keyframe-based semi-dense mapping to locate the tower with a clear line-shaped structure in 3-D space. Additionally, two reasonable paths are planned for the refined inspection. In experiments, the whole unmanned aerial vehicle system developed on Robot Operating System framework is evaluated along the paths both in a synthetic scene and in a real-world inspection environment. The final results show that the accuracy of unmanned aerial vehicle localization is improved, and the tower reconstruction is fast and clear. Based on our approach, the safe and autonomous unmanned aerial vehicle close proximity inspection of transmission tower can be realized.


2021 ◽  
Vol 10 (1) ◽  
pp. 208-215
Author(s):  
Azhar Jaafar ◽  
Norashikin M. Thamrin ◽  
Noorolpadzilah Mohamed Zan

This paper presents the use of the received signal strength indicator (RSSI) from the RF signal to estimate the distance from a point where the signal is transmitted to the point where the signal is received. This can be a challenge as in the paddy field, the watery and dry conditions, as well as the height of the paddy plant can affect signal transmission during this estimation process. Two low-cost ground beacons, Beacon1 and Beacon2 (The coordinator), are used and placed in a known location with a fixed distance across the paddy field, which becomes the reference point during the distance estimation for the unmanned aerial vehicle (UAV). These signals are analyzed by using the non-right-angle trigonometry computation, to estimate the distance between the transmitter and the receiver. The estimated distance is compared with the measured value to determine the efficiency of this approach. The calibration trendlines of these beacons in the open, watery and dry paddy fields are discussed and presented. It is found that the dry paddy field gives less RSSI mean error and proved that humidity can contribute to the distance estimation error.


2009 ◽  
Vol 55 (4-5) ◽  
pp. 323-343 ◽  
Author(s):  
Fernando Caballero ◽  
Luis Merino ◽  
Joaquín Ferruz ◽  
Aníbal Ollero

2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document