Energy Balance Laws for Nonlinearly Coupled Fields in Layered, Cubically Polarizable Media

Author(s):  
Lutz Angermann ◽  
Vasyl V. Yatsyk

A new unified procedure for constructing continuum theories of deformable media is presented and used in this and a companion paper. The procedure starts with a balance of energy and derives from it all the relevant balance laws that may also include those that are associated with thermal, electrical and magnetic effects; the basic energetic ingredients that are included in the balance of energy depend, of course, on the nature of the particular theory of material behaviour desired. The advantage of the new procedure becomes especially apparent when one considers formulation of a new theory of material behaviour for which additional balance laws (involving new kinetic quantities) are required to accompany any additional basic kinematic and thermal variables additional to those in the classical formulation. Indeed, in the formulation of such new theories, usually little or no previous information is available concerning properties of the new kinetic quantities in the additional balance laws; and, in this connection, the unified procedure of this paper provides a simple attractive setting for deriving the basic equations that are automatically consistent with the energy balance. In this paper, first the basic features of the new procedure are illustrated in the context of classical thermomechanics. Generalizations of this thermomechanical theory are then discussed in two cases: (1) in the presence of an additional kinematic variable and (2) in the presence of full electromagnetic effects. Both of these generalizations bring out some interesting novel features when new theories are being constructed.


Author(s):  
Lallit Anand ◽  
Sanjay Govindjee

This chapter presents the elements of linear piezoelectricity including mechanical and electrostatic balance laws and coupled mechanical electrical constitutive relations. The thermodynamically consistent constitutive relations are determined from a coupled electromechanical energy balance argument and expressions are given alternately considering the electric field and the electric displacement as independent fields. Appropriate electrical boundary conditions are also discussed. The theory is also specialized to poled piezoceramics. A chapter appendix provides a brief discussion of Maxwell’s equations for electromagnetics and energy transport in the quasi-static limit. A second chapter appendix discusses the properties of third order tensors.


An analysis of moving defects in homogeneous elastic materials is given in this paper. The laws of linear momentum, moment of momentum and energy are obtained in a distributional form. The motion of singularities gives rise to new terms in these balance laws. A quasistatic propagation criterion of energetic nature is used to obtain the balance of energy in the form of a conservation law for the material-defect system. The energy of this system consists of the elastic energy of the material and an additional term called the energy of the defect. It is uniformly distributed on the defect and its density represents, for two-dimensional bodies, the energy required to form a new unit defect area (or length). For cracks the existence of a Griffith-type surface energy distribution is obtained. For notches and cavities we show that an energy distributed over their boundary does not agree with the distributional form of the energy balance, which conduces to an energy distribution on the whole cavity. When the defect is an edge or screw dislocation, an energy distributed on the slip plane is obtained, its density being related to the Peach-Koehler force acting on the dislocation line.


1994 ◽  
Vol 144 ◽  
pp. 315-321 ◽  
Author(s):  
M. G. Rovira ◽  
J. M. Fontenla ◽  
J.-C. Vial ◽  
P. Gouttebroze

AbstractWe have improved previous model calculations of the prominence-corona transition region including the effect of the ambipolar diffusion in the statistical equilibrium and energy balance equations. We show its influence on the different parameters that characterize the resulting prominence theoretical structure. We take into account the effect of the partial frequency redistribution (PRD) in the line profiles and total intensities calculations.


1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


Author(s):  
B Otto ◽  
H Rochlitz ◽  
M Möhlig ◽  
L Burget ◽  
J Kampe ◽  
...  
Keyword(s):  

2005 ◽  
Vol 43 (10) ◽  
Author(s):  
B Otto ◽  
F Lippl ◽  
P Pfluger ◽  
J Spranger ◽  
U Cuntz ◽  
...  
Keyword(s):  

2020 ◽  
Vol 2 (1) ◽  
pp. 19-24
Author(s):  
Sakhr Mohammed Sultan ◽  
Chih Ping Tso ◽  
Ervina Efzan Mohd Noor ◽  
Fadhel Mustafa Ibrahim ◽  
Saqaff Ahmed Alkaff

Photovoltaic Thermal Solar Collector (PVT) is a hybrid technology used to produce electricity and heat simultaneously. Current enhancements in PVT are to increase the electrical and thermal efficiencies. Many PVT factors such as type of absorber, thermal conductivity, type of PV module and operating conditions are important parameters that can control the PVT performance. In this paper, an analytical model, using energy balance equations, is studied for PVT with an improved parallel flow absorber. The performance is calculated for a typical sunny weather in Malaysia. It was found that the maximum electrical and thermal efficiencies are 12.9 % and 62.6 %, respectively. The maximum outlet water temperature is 59 oC.


Sign in / Sign up

Export Citation Format

Share Document