Energy Consumption Prediction of Electric Vehicle Air Conditioning System Using Artificial Intelligence

Author(s):  
Arsen Sagoian ◽  
Bogdan Ovidiu Varga ◽  
Svyatoslav Solodushkin
2020 ◽  
pp. 014459872092073
Author(s):  
Bao Peng ◽  
Hui-Min Zou ◽  
Peng-Fei Bai ◽  
Yu-Yang Feng

Central air conditioning is the main energy-consuming equipment in modern large-scale commercial buildings. Its energy consumption generally accounts for more than 60% of the electricity load of an entire building, and there is a rising trend. Focusing on reducing central air conditioning energy consumption is a first priority to achieve energy savings in modern large-scale commercial buildings. To study the main influencing factors of central air conditioning energy consumption in large shopping malls, in-depth collection and analysis of energy consumption data of Shenzhen Tian-hong shopping mall were considered, and the impact of factors such as the basic composition of central air conditioning, time, and Shenzhen weather on the energy consumption of shopping malls was considered. The most representative Buji Rainbow store of the Rainbow Group is used as the research object. The influencing factors of central air conditioning on its energy consumption are divided into air conditioning pumps, host 1–1, host 1–2, host 2–1, and host 2–2. The power consumption of the freezer and the eight impact indicators of time and weather in Shenzhen were constructed using Pearson correlation coefficients and a long short-term memory neural network method to construct a regression model of the energy consumption prediction of the mall building. The average relative deviation between the predicted energy consumption values and the measured energy consumption values is less than 10%, which indicates that the main influencing factors selected in this paper can better explain the energy consumption of the mall, and the obtained energy consumption prediction model has high accuracy.


2012 ◽  
Vol 516-517 ◽  
pp. 1164-1170 ◽  
Author(s):  
Jin Rui Nan ◽  
Yao Wang ◽  
Zhi Chai ◽  
Jun Kui Huang

An simulation model for pure electric vehicle air conditioning system is established in MATLAB/ Simulink environment. The critical component of air conditioning system is selected and simulated. Fuzzy logic control method is used in AC motor controlling strategy. Combined with ADVISOR, the total vehicle energy consumption and AC energy consumption are simulated and calculated. The research indicate that by using Fuzzy logic control led AC system, the vehicle’s economcial effeciency improved. Life mileage is longer than the EV with traditional AC system and a better effect of energy saving is achieved.


2021 ◽  
Vol 12 (4) ◽  
pp. 160
Author(s):  
Zhaolong Zhang ◽  
Yuan Zou ◽  
Teng Zhou ◽  
Xudong Zhang ◽  
Zhifeng Xu

Digital twinning technology originated in the field of aerospace. The real-time and bidirectional feature of data interaction guarantees its advantages of high accuracy, real-time performance and scalability. In this paper the digital twin technology was introduced to electric vehicle energy consumption research. First, an energy consumption model of an electric vehicle of BAIC BJEV was established, then the model was optimized and verified through the energy consumption data of the drum test. Based on the data of the vehicle real-time monitoring platform, a digital twin model was built, and it was trained and updated by daily new data. Eventually it can be used to predict and verify the data of vehicle. In this way the prediction of energy consumption of vehicles can be achieved.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 344
Author(s):  
Alejandro Humberto García Ruiz ◽  
Salvador Ibarra Martínez ◽  
José Antonio Castán Rocha ◽  
Jesús David Terán Villanueva ◽  
Julio Laria Menchaca ◽  
...  

Electricity is one of the most important resources for the growth and sustainability of the population. This paper assesses the energy consumption and user satisfaction of a simulated air conditioning system controlled with two different optimization algorithms. The algorithms are a genetic algorithm (GA), implemented from the state of the art, and a non-dominated sorting genetic algorithm II (NSGA II) proposed in this paper; these algorithms control an air conditioning system considering user preferences. It is worth noting that we made several modifications to the objective function’s definition to make it more robust. The energy-saving optimization is essential to reduce CO2 emissions and economic costs; on the other hand, it is desirable for the user to feel comfortable, yet it will entail a higher energy consumption. Thus, we integrate user preferences with energy-saving on a single weighted function and a Pareto bi-objective problem to increase user satisfaction and decrease electrical energy consumption. To assess the experimentation, we constructed a simulator by training a backpropagation neural network with real data from a laboratory’s air conditioning system. According to the results, we conclude that NSGA II provides better results than the state of the art (GA) regarding user preferences and energy-saving.


Sign in / Sign up

Export Citation Format

Share Document