A High Efficiency LLC Resonant Converter with Wide Ranged Output Voltage Using Adaptive Turn Ratio Scheme for a Li-Ion Battery Charger

Author(s):  
Hyeong-Gu Han ◽  
Yeong-Jun Choi ◽  
See-Yong Choi ◽  
Rae-Yong Kim
Author(s):  
Sevilay Cetin ◽  

In this study, high efficiency design of an on-board Electrical Vehicle (EV) battery charger is presented. The presented charger has two stages where the first stage is conventional front-end boost converter and the second stage is LLC resonant converter. The basic principles of both stage are discussed and the detailed design procedures are presented in terms of wide range output voltage regulation, wide range load condition, high efficiency and high power density. The presented design approach is tested with a prototype implemented with 2.5 kW output power at 250 V-450 V output voltage range. The peak efficiency of system is obtained as 95.53% at full load condition.


Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 759
Author(s):  
Bong-Yeon Choi ◽  
Soon-Ryung Lee ◽  
Jin-Wook Kang ◽  
Won-Sang Jeong ◽  
Chung-Yuen Won

This paper proposes a novel dual integrated LLC resonant converter (DI-LRC) with a wide output voltage range using various switching patterns. The primary side of the proposed DI-LLC converter consists of two resonant tanks and six switches, while the secondary side consists of a six-pulse diode rectifier. Depending on the switching pattern of the primary switch, the DI-LRC converter is performed by single full-bridge operation with a voltage gain of 1, series-connected full-bridge operation with a voltage gain of 0.5, series-connected half bridge operation with a voltage gain of 0.25, and parallel-connected full-bridge operation with a voltage gain of 2. Accordingly, the proposed DI-LRC converter has four voltage gain curves with different variations and achieves a wider output voltage range than the conventional single voltage gain curve in a given operating frequency range. In this paper, the equivalent circuits derived for each switching pattern are proposed to analyze the operating characteristics of the proposed converter according to each switching pattern, and each Q factor and voltage gain are calculated based on the analyzed equivalent circuit. The performance of the proposed converter and switching pattern is verified using the simulation and experimental results of the prototype battery charger, which is designed to be 4-kW class.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 26653-26665 ◽  
Author(s):  
Hengshan Xu ◽  
Zhongdong Yin ◽  
Yushan Zhao ◽  
Yongzhang Huang

Author(s):  
Mustapha El Alaoui ◽  
Karim El Khadiri ◽  
Rachid El Alami ◽  
Ahmed Tahiri ◽  
Ahmed Lakhssassi ◽  
...  

A new Li-Ion battery charger interface (BCI) using pulse control (PC) technique is designed and analyzed in this paper. Thanks to the use of PC technique, the main standards of the Li-Ion battery charger, i.e. fast charge, small surface area and high efficiency, are achieved. The proposed charger achieves full charge in forty-one minutes passing by the constant current (CC) charging mode which also included the start-up and the constant voltage mode (CV) charging mode. It designed, simulated and layouted which occupies a small size area 0.1 mm2 by using Taiwan Semiconductor Manufacturing Company 180 nm complementary metal oxide semi-conductor technology (TSMC 180 nm CMOS) technology in Cadence Virtuoso software. The battery voltage VBAT varies between 2.9 V to 4.35 V and the maximum battery current IBAT is 2.1 A in CC charging mode, according to a maximum input voltage VIN equal 5 V. The maximum charging efficiency reaches 98%.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Youssef Ziadi ◽  
Hassan Qjidaa

This paper presents a high efficiency Li-ion battery LDO-based charger IC which adopted a three-mode control: trickle constant current, fast constant current, and constant voltage modes. The criteria of the proposed Li-ion battery charger, including high accuracy, high efficiency, and low size area, are of high importance. The simulation results provide the trickle current of 116 mA, maximum charging current of 448 mA, and charging voltage of 4.21 V at the power supply of 4.8–5 V, using 0.18 μm CMOS technology.


Sign in / Sign up

Export Citation Format

Share Document