Design and Evaluation of a Free-Hand VR-based Authoring Environment for Automated Vehicle Testing

Author(s):  
Sevinc Eroglu ◽  
Frederic Stefan ◽  
Alain Chevalier ◽  
Daniel Roettger ◽  
Daniel Zielasko ◽  
...  
Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 342
Author(s):  
Jing Ma ◽  
Xiaobo Che ◽  
Yanqiang Li ◽  
Edmund M.-K. Lai

Testing and validation of the functionalities and safety of automated vehicles shifted from a distance-based to a scenario-based method in the past decade. A number of domain-specific languages and systems were developed to support scenario-based testing. The aim of this paper is to review and compare the features and characteristics of the major scenario description languages and systems (SDLS). Each of them is designed for different purposes and with different goals; therefore, they have their strengths and weaknesses. Their characteristics are highlighted with an example nontrivial traffic scenario that we designed. We also discuss some directions for further development and research of these SDLS.


1991 ◽  
Vol 19 (3) ◽  
pp. 122-141 ◽  
Author(s):  
C. Wright ◽  
G. L. Pritchett ◽  
R. J. Kuster ◽  
J. D. Avouris

Abstract A method for determining the effect of suspension dynamics on tire wear has been developed. Typical city cycle maneuvers are defined by instrumented vehicle testing and data in the form of forward velocities and steer angles are used as an input to an ADAMS computer model of the vehicle. A simulation of the maneuvers generates a tire's operating environment in the form of normal load, slip, and camber variations, which contain all the subtle effects of the vehicle's suspension, steering, and handling characteristics. A cyclic repetition of the tire's operating environment is constructed and used to control an MTS Flat-Trac machine. In this way, accelerated tire wear can be generated in the laboratory which is directly related to the design features of the vehicle's suspension and steering systems.


Author(s):  
Varun Kumar ◽  
Lakshya Gaur ◽  
Arvind Rehalia

In this paper the authors have explained the development of robotic vehicle prepared by them, which operates autonomously and is not controlled by the users, except for selection of modes. The different modes of the automated vehicle are line following, object following and object avoidance with alternate trajectory determination. The complete robotic assembly is mounted on a chassis comprising of Arduino Uno, Servo motors, HC-SRO4 (Ultrasonic sensor), DC motors (Geared), L293D Motor Driver, IR proximity sensors, Voltage Regulator along with castor wheel and two normal wheels.


Sign in / Sign up

Export Citation Format

Share Document