Random and realistic mobility models impact on the performance of bypass-AODV routing protocol

Author(s):  
Ahed Alshanyour ◽  
Uthman Baroudi
2021 ◽  
Vol 56 (5) ◽  
pp. 457-463
Author(s):  
Outazgui Saloua ◽  
Fakhri Youssef

This paper aims to present a detailed study of different mobility models applicable for Wireless Sensor Networks (WSN). Wireless Sensor Networks (WSN) have evolved dramatically in mobile networks, providing the key advantage of offering access to information without considering a user's spatial and topological characteristics. Due to the exponential advancement of the Internet and the development of small handheld devices as a source of connectivity and data sharing, the wireless network has almost exploded over the past few years. As a routing protocol for WSN in different studies, the Ad-hoc On-demand Distance-vector routing protocol (AODV) has shown better performance than different routing protocols. It offers quick adaptation to dynamic link conditions, low processing, low memory overheads, and low network utilization. To develop an optimized routing protocol, in our previous work, we had proposed an enhancement of the AODV routing protocol to increase the performance of the classic AODV protocol by optimizing the energy consumption and automatically maximizing the network lifetime. In this paper, we present a detailed study of mobility models applicable for WSN. We describe various mobility models representing mobile nodes whose movements are independent (individual mobility models) and dependent (group mobility models). Furthermore, we will focus on studying the behavior of our optimized version of AODV that we named RE-AODV with different existing mobility models so that we can, in the end, select the best mobility model. In terms of network efficiency, simulation results in this Work demonstrate that the type of mobility model used makes the difference and influences the behavior of nodes.


2011 ◽  
Vol 403-408 ◽  
pp. 2415-2419 ◽  
Author(s):  
Yuan Ming Ding ◽  
Chang Hong Sun ◽  
Lin Song ◽  
Wan Qi Kong

Simulation environment of the mobile Ad Hoc network is built by applying NS2 simulation software. The simulation data indicates that AODV routing protocol is better than DSDV in throughput, fairness and stability. In the underwater network environment where the nodes are in Low-Speed movement, the data transfer rate of AODV routing protocol is higher than AOMDV. To a certain extent, AODV is more suitable for application in underwater environments.


2018 ◽  
Vol 7 (3.16) ◽  
pp. 76
Author(s):  
Deepak . ◽  
Rajkumar .

Vehicular ad hoc networks is an emerging area for researchers to provide intelligent transportation system to the society. It is due to the wide area of applications of VANETs interest is developed among the people from different countries to be a part of it. Therefore many projects had been started and also presently working to implement VANETs in real world scenario. The main challenge in its implementation is to provide a secure mechanism against the various attacks and threats that have the capability to bring the network performance significantly down. In this paper to overcome different types of authentication based attacks in VANETs an ECDSA based secure routing protocol SE-AODV is proposed with security features incorporated in already existing AODV routing protocol. The performance of SE-AODV is evaluated and compared with original AODV and AODV with black hole attack (BH-AODV). The SE-AODV shows better performance with the parameters used for comparison with the variation in vehicle density, speed of vehicles and simulation time. 


Sign in / Sign up

Export Citation Format

Share Document