scholarly journals A Comparative Analysis of Trust Models for Safety Applications in IoT-enabled Vehicular Networks

Author(s):  
Farhan Ahmad ◽  
Asma Adnane ◽  
Fatih Kurugollu ◽  
Rasheed Hussain
2011 ◽  
Vol 64 (3) ◽  
pp. 401-416 ◽  
Author(s):  
Mahmoud Efatmaneshnik ◽  
Allison Kealy ◽  
Asghar Tabatabei Balaei ◽  
Andrew G. Dempster

Cooperative positioning (CP) is a localization technique originally developed for use across wireless sensor networks. With the emergence of Dedicated Short Range Communications (DSRC) infrastructure for use in Intelligent Transportation Systems (ITS), CP techniques can now be adapted for use in location determination across vehicular networks. In vehicular networks, the technique of CP fuses GPS positions with additional sensed information such as inter-vehicle distances between the moving vehicles to determine their location within a neighbourhood. This paper presents the results obtained from a research study undertaken to demonstrate the capabilities of DSRC for meeting the positioning accuracies of road safety applications. The results show that a CP algorithm that fully integrates both measured/sensed data as well as navigation information such as map data can meet the positioning requirements of safety related applications of DSRC (<0·5 m). This paper presents the results of a Cramer Rao Lower Bound analysis which is used to benchmark the performance of the CP algorithm developed. The Kalman Filter (KF) models used in the CP algorithm are detailed and results obtained from integrating GPS positions, inter-vehicular ranges and information derived from in-vehicle maps are then discussed along with typical results as determined through a variety of network simulation studies.


2019 ◽  
Vol 15 (1) ◽  
pp. 155014771982582 ◽  
Author(s):  
Razi Iqbal ◽  
Talal Ashraf Butt ◽  
Muhammad Afzaal ◽  
Khaled Salah

The Internet of things is the next stage in the evolution of the Internet that is being materialized with the integration of billions of smart objects. The state-of-the-art communication technologies have enabled the previously isolated devices to become an active part of the Internet. This constant connectivity opens new avenues for novel applications such as the realization of social Internet of things and its subdomain the social Internet of vehicles. Socializing requires sharing of information that entails trust, especially in an open and broad social environment. This article highlights the key factors involved in conceptualizing an efficient trust model for social Internet of vehicles. Furthermore, it focuses on the unique challenges involved in designing the trust models for social Internet of vehicles. Several trust models exist in literature; however, most of the existing trust models are specific to their domains, for example, Internet of things, social Internet of things, or general vehicular networks. This article presents a brief review of the trust models that have the potential to be implemented in Social Internet of vehicles. Finally, the authors present an overview of how trending concepts and emerging technologies like blockchain and fog computing can assist in developing a trust-based social Internet of vehicles model for high-efficiency, decentralized architecture and dynamic nature of vehicular networks.


Information ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 163 ◽  
Author(s):  
Gonçalo Pessoa ◽  
Lucas Guardalben ◽  
Miguel Luís ◽  
Carlos Senna ◽  
Susana Sargento

The main drivers for the continuous development of Vehicular ad-hoc Networks (VANETs) are safety applications and services. However, in recent years, new interests have emerged regarding the introduction of new applications and services for non-urgent content (e.g., videos, ads, sensing and touristic information) dissemination. However, there is a lack of real studies considering content dissemination strategies to understand when and to whom the content should be disseminated using real vehicular traces gathered from real vehicular networks. This work presents a realistic study of strategies for dissemination of non-urgent content with the main goal of improving content delivery as well as minimizing network congestion and resource usage. First, we perform an exhaustive network characterization. Then, several content strategies are specified and evaluated in different scenarios (city center and parking lot). All the obtained results show that there are two content distribution strategies that clearly set themselves apart due to their superior performance: Local Rarest Bundle First and Local Rarest Generation First.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Fangyu Gai ◽  
Jiexin Zhang ◽  
Peidong Zhu ◽  
Xinwen Jiang

The integration of social networking concepts with Internet of Vehicles (IoV) has led to the novel paradigm “Social Internet of Vehicles (SIoV),” which enables vehicles to establish social relationships autonomously to improve traffic conditions and service discovery. There is a growing requirement for effective trust management in the SIoV, considering the critical consequences of acting on misleading information spread by malicious nodes. However, most existing trust models are rater-based, where the reputation information of each node is stored in other nodes it has interacted with. This is not suitable for vehicular environment due to the ephemeral nature of the network. To fill this gap, we propose a Ratee-based Trust Management (RTM) system, where each node stores its own reputation information rated by others during past transactions, and a credible CA server is introduced to ensure the integrality and the undeniability of the trust information. RTM is built based on the concept of SIoV, so that the relationships established between nodes can be used to increase the accuracy of the trustworthiness. Experimental results demonstrate that our scheme achieves faster information propagation and higher transaction success rate than the rater-based method, and the time cost when calculating trustworthiness can meet the demand of vehicular networks.


2013 ◽  
Vol 1 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Hassan Aboubakr Omar ◽  
Weihua Zhuang ◽  
Atef Abdrabou ◽  
Li Li

Sign in / Sign up

Export Citation Format

Share Document