Reliable broadcasting using polling scheme based receiver for safety applications in vehicular networks

2016 ◽  
Vol 4 ◽  
pp. 1-14 ◽  
Author(s):  
Huong Nguyen-Minh ◽  
Abderrahim Benslimane ◽  
Der-Jiunn Deng
2011 ◽  
Vol 64 (3) ◽  
pp. 401-416 ◽  
Author(s):  
Mahmoud Efatmaneshnik ◽  
Allison Kealy ◽  
Asghar Tabatabei Balaei ◽  
Andrew G. Dempster

Cooperative positioning (CP) is a localization technique originally developed for use across wireless sensor networks. With the emergence of Dedicated Short Range Communications (DSRC) infrastructure for use in Intelligent Transportation Systems (ITS), CP techniques can now be adapted for use in location determination across vehicular networks. In vehicular networks, the technique of CP fuses GPS positions with additional sensed information such as inter-vehicle distances between the moving vehicles to determine their location within a neighbourhood. This paper presents the results obtained from a research study undertaken to demonstrate the capabilities of DSRC for meeting the positioning accuracies of road safety applications. The results show that a CP algorithm that fully integrates both measured/sensed data as well as navigation information such as map data can meet the positioning requirements of safety related applications of DSRC (<0·5 m). This paper presents the results of a Cramer Rao Lower Bound analysis which is used to benchmark the performance of the CP algorithm developed. The Kalman Filter (KF) models used in the CP algorithm are detailed and results obtained from integrating GPS positions, inter-vehicular ranges and information derived from in-vehicle maps are then discussed along with typical results as determined through a variety of network simulation studies.


Information ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 163 ◽  
Author(s):  
Gonçalo Pessoa ◽  
Lucas Guardalben ◽  
Miguel Luís ◽  
Carlos Senna ◽  
Susana Sargento

The main drivers for the continuous development of Vehicular ad-hoc Networks (VANETs) are safety applications and services. However, in recent years, new interests have emerged regarding the introduction of new applications and services for non-urgent content (e.g., videos, ads, sensing and touristic information) dissemination. However, there is a lack of real studies considering content dissemination strategies to understand when and to whom the content should be disseminated using real vehicular traces gathered from real vehicular networks. This work presents a realistic study of strategies for dissemination of non-urgent content with the main goal of improving content delivery as well as minimizing network congestion and resource usage. First, we perform an exhaustive network characterization. Then, several content strategies are specified and evaluated in different scenarios (city center and parking lot). All the obtained results show that there are two content distribution strategies that clearly set themselves apart due to their superior performance: Local Rarest Bundle First and Local Rarest Generation First.


2013 ◽  
Vol 1 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Hassan Aboubakr Omar ◽  
Weihua Zhuang ◽  
Atef Abdrabou ◽  
Li Li

Author(s):  
Halbast Rasheed Ismael ◽  
Siddeeq Y. Ameen ◽  
Shakir Fattah Kak ◽  
Hajar Maseeh Yasin ◽  
Ibrahim Mahmood Ibrahim ◽  
...  

Vehicular communications, referring to information exchange among vehicles, and infrastructures. It has attracted a lot of attentions recently due to its great potential to support intelligent transportation, various safety applications, and on-road infotainment. The aim of technologies such as Vehicle-to-Vehicl (V2V) and Vehicle to-Every-thibg (V2X) Vehicle-to very-thing is to include models of connectivity that can be used in various application contexts by vehicles. However, the routing reliability of these ever-changing networks needs to be paid special attention. The link reliability is defined as the probability that a direct communication link between two vehicles will stay continuously available over a specified period. Furthermore, the link reliability value is accurately calculated using the location, direction and velocity information of vehicles along the road.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1902
Author(s):  
Xiaofeng Liu ◽  
Ben St. Amour ◽  
Arunita Jaekel

Vehicular ad Hoc networks (VANETs) support a variety of applications ranging from critical safety applications to “infotainment” or “comfort” applications. In North America, 75 MHz of the spectrum in the 5.9 GHz band has been allocated for vehicular communication. Safety applications rely on event-driven “alert” messages as well as the periodic broadcast of Basic Safety Messages (BSMs) containing critical information, e.g., position, speed, and heading from participating vehicles. The limited channel capacity and high message rates needed to ensure an adequate level of awareness make the reliable delivery of BSMs a challenging problem for VANETs. In this paper, we propose a decentralized congestion control algorithm that uses variable transmission power levels to reduce the channel busy ratio while maintaining a high level of awareness for nearby vehicles. The simulation results indicate that the proposed approach is able to achieve a suitable balance between awareness and bandwidth usage.


Sign in / Sign up

Export Citation Format

Share Document