scholarly journals Engineering Students' Virtual Learning Challenges during COVID-19 Pandemic Lockdown: A Case Study

Author(s):  
Christian A. Bolu ◽  
Joseph Azeta ◽  
Stephen J. Mallo ◽  
S. O. Ismaila ◽  
Joseph O. Dada ◽  
...  
2014 ◽  
Vol 1 (1) ◽  
pp. 111-114
Author(s):  
Lal Mohan Baral ◽  
Ramzan Muhammad ◽  
Claudiu Vasile Kifor ◽  
Ioan Bondrea

AbstractProblem-based learning as a teaching tool is now used globally in many areas of higher education. It provides an opportunity for students to explore technical problems from a system-level perspective and to be self-directed life-long learner which is mandatory for equipping engineering students with the skill and knowledge. This paper presents a case study illustrating the effectiveness of implemented Problem-based learning (PBL) during five semesters in the undergraduate programs of Textile Engineering in Ahsanullah University of Science and Technology (AUST). An assessment has been done on the basis of feedback from the students as well as their employers by conducting an empirical survey for the evaluation of PBL impact to enhance the student's competencies. The Evaluations indicate that students have achieved remarkable competencies through PBL practices which helped them to be competent in their professional life.


2021 ◽  
pp. 251512742110290
Author(s):  
Smitesh Bakrania

Most engineering design projects focus primarily on the engineering fundamentals. Studying the business case or manufacturability of a design is often left for other courses, if at all. To address this gap, an existing mechanical engineering course project was modified by embedding the interdependent entrepreneurial dimensions. In the past, junior engineering students developed a reciprocating air engines over two semesters. The modified project extended the engineering fundamentals into an entrepreneurial venture. To accomplish this, students were asked to propose an air engine toy for middle schoolers. The proposed toy had to be assembled, provide a learning opportunity, and demonstrate utility. The students had to ensure the product appealed to those interested in the STEM fields. The students, working in groups, created renders of the final product, assembly instructions, and a guided worksheet for the kids to explore the underlying engineering concept. The groups produced a website with a video pitching their toy concepts. This case study exemplifies how any engineering endeavor can be modified to capture a more holistic simulation of the profession.


2021 ◽  
Vol 13 (11) ◽  
pp. 5768
Author(s):  
Hugo A López ◽  
Pedro Ponce ◽  
Arturo Molina ◽  
María Soledad Ramírez-Montoya ◽  
Edgar Lopez-Caudana

Nowadays, engineering students have to improve specific competencies to tackle the challenges of 21st-century-industry, referred to as Industry 4.0. Hence, this article describes the integration and implementation of Education 4.0 strategies with the new educational model of our university to respond to the needs of Industry 4.0 and society. The TEC21 Educational Model implemented at Tecnologico de Monterrey in Mexico aims to develop disciplinary and transversal competencies for creative and strategic problem-solving of present and future challenges. Education 4.0, as opposed to traditional education, seeks to provide solutions to these challenges through innovative pedagogies supported by emerging technologies. This article presents a case study of a Capstone project developed with undergraduate engineering students. The proposed structure integrates the TEC21 model and Education 4.0 through new strategies and laboratories, all linked to industry. The results of a multidisciplinary project focused on an electric vehicle racing team are presented, composed of Education 4.0 elements and competencies development in leadership, innovation, and entrepreneurship. The project was a collaboration between academia and the productive sector. The results verified the students’ success in acquiring the necessary competencies and skills to become technological leaders in today’s modern industry. One of the main contributions shown is a suitable education framework for bringing together the characteristics established by Education 4.0 and achieved by our educational experience based on Education 4.0.


2021 ◽  
Vol 11 (4) ◽  
pp. 156
Author(s):  
Wai Kian Tan ◽  
Minoru Umemoto

In this globalization-focused era, the demand for globalized engineers in the creation of borderless societies is increasing. Despite the initiatives by the Japanese government to promote internalization through increasing the intake of foreign students, the exposures gained by the Japanese students from these programs are minimal. For years, internship has been used globally as a platform for training and educating future engineers, but only a few studies have examined the proactive transformation from domestic to international internship. International internships overseas offer a completely new dimension of experiences when carried out in multicultural environments. This article reports and offers evidence of a Japanese engineering university’s rapid global internship reform strategy toward the expansion of international internships in Malaysia. This paper provides insights into the process, from initial setup to implementation of the internship program covering all the necessary preparation and support. From the establishment of an overseas collaboration base and rapport building with hosting industries, the systematic steps taken are reported. Regarding the internship program, feedback from Japanese engineering students who completed their internships show improved satisfaction due to continuous improvement of the internship program with progressing years. It was also discovered that the low participation rate in overseas internship by Japanese students is not due to their inward-looking temperament, but due to the lack of internship program availability that is administered with sufficient preparation enabling them to challenge themselves in a new environment. The challenges encountered in the program, and the sustainable improvements made in alignment with sustainable development goals toward equitable quality education and promotion of lifelong learning are also stated. In this paper, the future perspectives and outlook of internships are also described considering today’s rapid technological advancements and the fast-changing needs of industries, which require future internship programs to have flexible approaches and ideologies.


2021 ◽  
Vol 11 (2) ◽  
pp. 56
Author(s):  
Saray Busto ◽  
Michael Dumbser ◽  
Elena Gaburro

In this article we present a case study concerning a simple but efficient technical and logistic concept for the realization of blended teaching of mathematics and its applications in theoretical mechanics that was conceived, tested and implemented at the Department of Civil, Environmental and Mechanical Engineering (DICAM) of the University of Trento, Italy, during the COVID-19 pandemic. The concept foresees traditional blackboard lectures with a reduced number of students physically present in the lecture hall, while the same lectures are simultaneously made available to the remaining students, who cannot be present, via high-quality low-bandwidth online streaming. The case study presented in this paper was implemented in a single University Department and was carried out with a total of n=1011 students and n=68 professors participating in the study. Based on our first key assumption that traditional blackboard lectures, including the gestures and the facial expressions of the professor, are even nowadays still a very efficient and highly appreciated means of teaching mathematics at the university, this paper deliberately does not want to propose a novel pedagogical concept of how to teach mathematics at the undergraduate level, but rather presents a technical concept of how to preserve the quality of traditional blackboard lectures even during the COVID-19 pandemic and how to make them available to the students at home via online streaming with adequate audio and video quality even at low internet bandwidth. The second key assumption of this paper is that the teaching of mathematics is a dynamic creative process that requires the physical presence of students in the lecture hall as audience so that the professor can instantaneously fine-tune the evolution of the lecture according to his/her perception of the level of attention and the facial expressions of the students. The third key assumption of this paper is that students need to have the possibility to interact with each other personally, especially in the first years at the university. We report on the necessary hardware, software and logistics, as well as on the perception of the proposed blended lectures by undergraduate students from civil and environmental engineering at the University of Trento, Italy, compared to traditional lectures and also compared to the pure online lectures that were needed as emergency measure at the beginning of the COVID-19 pandemic. The evaluation of the concept was carried out with the aid of quantitative internet bandwidth measurements, direct comparison of transmitted video signals and a careful analysis of ex ante and ex post online questionnaires sent to students and professors.


2013 ◽  
Vol 34 (4) ◽  
pp. 975-990 ◽  
Author(s):  
Onofrio Rosario Battaglia ◽  
Claudio Fazio ◽  
Rosa Maria Sperandeo-Mineo

2012 ◽  
Vol 134 (2) ◽  
Author(s):  
George Platanitis ◽  
Remon Pop-Iliev ◽  
Ahmad Barari

This paper proposes the use of a design structure matrix/work transformation matrix (DSM/WTM)-based methodology in academic settings to serve engineering educators as a facilitating tool for predetermining the difficulty and feasibility of design engineering projects they assign, given both the time constraints of the academic term and the expected skill level of the respective learners. By using a third-year engineering design project as a case study, engineering students actively participated in this comprehensive use of DSM methodologies. The engineering design process has been thoroughly analyzed to determine convergence characteristics based on the eigenvalues of the system followed by a sensitivity analysis on the originally determined DSM based on data provided by students in terms of task durations and number of iterations for each task. Finally, an investigation of the design process convergence due to unexpected events or random disturbances has been conducted. The obtained predictive model of the design process was compared to the actual dynamics of the project as experienced by the students and the effect of random disturbances at any point in the design process has thereby been evaluated.


Sign in / Sign up

Export Citation Format

Share Document