Preliminary study of pedaling motor imagery classification based on EEG signals

Author(s):  
M. Rodriguez-Ugarte ◽  
I. N. Angulo-Sherman ◽  
E. Ianez ◽  
M. Ortiz ◽  
J. M. Azorin
Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 210 ◽  
Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g., hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause by the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: (1) A long short-term memory (LSTM); (2) a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (any manual) feature engineering. Results were evaluated on our own publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI Competition IV”. Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Alkinoos Athanasiou ◽  
Chrysa Lithari ◽  
Konstantina Kalogianni ◽  
Manousos A. Klados ◽  
Panagiotis D. Bamidis

Introduction. Sensorimotor cortex is activated similarly during motor execution and motor imagery. The study of functional connectivity networks (FCNs) aims at successfully modeling the dynamics of information flow between cortical areas.Materials and Methods. Seven healthy subjects performed 4 motor tasks (real foot, imaginary foot, real hand, and imaginary hand movements), while electroencephalography was recorded over the sensorimotor cortex. Event-Related Desynchronization/Synchronization (ERD/ERS) of the mu-rhythm was used to evaluate MI performance. Source detection and FCNs were studied with eConnectome.Results and Discussion. Four subjects produced similar ERD/ERS patterns between motor execution and imagery during both hand and foot tasks, 2 subjects only during hand tasks, and 1 subject only during foot tasks. All subjects showed the expected brain activation in well-performed MI tasks, facilitating cortical source estimation. Preliminary functional connectivity analysis shows formation of networks on the sensorimotor cortex during motor imagery and execution.Conclusions. Cortex activation maps depict sensorimotor cortex activation, while similar functional connectivity networks are formed in the sensorimotor cortex both during actual and imaginary movements. eConnectome is demonstrated as an effective tool for the study of cortex activation and FCN. The implementation of FCN in motor imagery could induce promising advancements in Brain Computer Interfaces.


Author(s):  
Koichi Nagata ◽  
Makoto Mihara ◽  
Tomonari Yamagutchi ◽  
Miyo Taniguchi ◽  
Katsuhiro Inoue ◽  
...  

2003 ◽  
Vol 36 (16) ◽  
pp. 139-144 ◽  
Author(s):  
Katsuhiro Inoue ◽  
Gert Pfurtscheller ◽  
Christa Neuper ◽  
Kousuke Kumamaru

Author(s):  
Saugat Bhattacharyya ◽  
Munshi Asif Hossain ◽  
Amit Konar ◽  
D. N. Tibarewala ◽  
Janarthanan Ramadoss

Author(s):  
Cristian David Guerrero-Mendez ◽  
Cristian Felipe Blanco-Diaz ◽  
Andres Felipe Ruiz-Olaya
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document