Tree Species Classification by Fusing of Very Highresoltuion Hyperspectral Images and 3K-DSM

Author(s):  
Xiangtian Yuan ◽  
Jiaojiao Tian ◽  
Daniele Cerra ◽  
Oliver Meynberg ◽  
Christian Kempf ◽  
...  
Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 818
Author(s):  
Yanbiao Xi ◽  
Chunying Ren ◽  
Zongming Wang ◽  
Shiqing Wei ◽  
Jialing Bai ◽  
...  

The accurate characterization of tree species distribution in forest areas can help significantly reduce uncertainties in the estimation of ecosystem parameters and forest resources. Deep learning algorithms have become a hot topic in recent years, but they have so far not been applied to tree species classification. In this study, one-dimensional convolutional neural network (Conv1D), a popular deep learning algorithm, was proposed to automatically identify tree species using OHS-1 hyperspectral images. Additionally, the random forest (RF) classifier was applied to compare to the algorithm of deep learning. Based on our experiments, we drew three main conclusions: First, the OHS-1 hyperspectral images used in this study have high spatial resolution (10 m), which reduces the influence of mixed pixel effect and greatly improves the classification accuracy. Second, limited by the amount of sample data, Conv1D-based classifier does not need too many layers to achieve high classification accuracy. In addition, the size of the convolution kernel has a great influence on the classification accuracy. Finally, the accuracy of Conv1D (85.04%) is higher than that of RF model (80.61%). Especially for broadleaf species with similar spectral characteristics, such as Manchurian walnut and aspen, the accuracy of Conv1D-based classifier is significantly higher than RF classifier (87.15% and 71.77%, respectively). Thus, the Conv1D-based deep learning framework combined with hyperspectral imagery can efficiently improve the accuracy of tree species classification and has great application prospects in the future.


2018 ◽  
Vol 10 (7) ◽  
pp. 1111 ◽  
Author(s):  
Edwin Raczko ◽  
Bogdan Zagajewski

Knowledge of tree species composition is obligatory in forest management. Accurate tree species maps allow for detailed analysis of a forest ecosystem and its interactions with the environment. The research presented here focused on developing methods of tree species identification using aerial hyperspectral data. The research area is located in Southwestern Poland and covers the Karkonoski National Park (KNP), which was significantly damaged by acid rain and pest infestation in the 1980s. High-resolution (3.35 m) Airborne Prism Experiment (APEX) hyperspectral images (288 spectral bands in the range of 413 to 2440 nm) were used as a basis for tree species classification. Beech (Fagus sylvatica), birch (Betula pendula), alder (Alnus incana), larch (Larix decidua), pine (Pinus sylvestris), and spruce (Picea abies) were classified. The classification algorithm used was feed-forward multilayered perceptron (MLP) with a single hidden layer. To simulate such a network, we used the R programming environment and the nnet package. To provide more accurate measurement of accuracy, iterative accuracy assessment was performed. The final tree species maps cover the whole area of KNP; a median overall accuracy (OA) of 87% was achieved, with median producer accuracy (PA) for all classes exceeding 68%. The best-classified classes were spruce, beech, and birch, with median producer accuracy of 93%, 88% and 83%, respectively. The pine class achieved the lowest median producer and user accuracies (68% and 75%, respectively). The results show great potential for the use of hyperspectral data as a tool for identifying tree species locations in diverse mountainous forest.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Guang Yang ◽  
Yaolong Zhao ◽  
Baoxin Li ◽  
Yuntao Ma ◽  
Ruren Li ◽  
...  

Explicit information of tree species composition provides valuable materials for the management of forests and urban greenness. In recent years, scholars have employed multiple features in tree species classification, so as to identify them from different perspectives. Most studies use different features to classify the target tree species in a specific growth environment and evaluate the classification results. However, the data matching problems have not been discussed; besides, the contributions of different features and the performance of different classifiers have not been systematically compared. Remote sensing technology of the integrated sensors helps to realize the purpose with high time efficiency and low cost. Benefiting from an integrated system which simultaneously acquired the hyperspectral images, LiDAR waveform, and point clouds, this study made a systematic research on different features and classifiers in pixel-wised tree species classification. We extracted the crown height model (CHM) from the airborne LiDAR device and multiple features from the hyperspectral images, including Gabor textural features, gray-level co-occurrence matrix (GLCM) textural features, and vegetation indices. Different experimental schemes were tested at two study areas with different numbers and configurations of tree species. The experimental results demonstrated the effectiveness of Gabor textural features in specific tree species classification in both homogeneous and heterogeneous growing environments. The GLCM textural features did not improve the classification accuracy of tree species when being combined with spectral features. The CHM feature made more contributions to discriminating tree species than vegetation indices. Different classifiers exhibited similar performances, and support vector machine (SVM) produced the highest overall accuracy among all the classifiers.


2021 ◽  
Vol 13 (10) ◽  
pp. 1868
Author(s):  
Martina Deur ◽  
Mateo Gašparović ◽  
Ivan Balenović

Quality tree species information gathering is the basis for making proper decisions in forest management. By applying new technologies and remote sensing methods, very high resolution (VHR) satellite imagery can give sufficient spatial detail to achieve accurate species-level classification. In this study, the influence of pansharpening of the WorldView-3 (WV-3) satellite imagery on classification results of three main tree species (Quercus robur L., Carpinus betulus L., and Alnus glutinosa (L.) Geartn.) has been evaluated. In order to increase tree species classification accuracy, three different pansharpening algorithms (Bayes, RCS, and LMVM) have been conducted. The LMVM algorithm proved the most effective pansharpening technique. The pixel- and object-based classification were applied to three pansharpened imageries using a random forest (RF) algorithm. The results showed a very high overall accuracy (OA) for LMVM pansharpened imagery: 92% and 96% for tree species classification based on pixel- and object-based approach, respectively. As expected, the object-based exceeded the pixel-based approach (OA increased by 4%). The influence of fusion on classification results was analyzed as well. Overall classification accuracy was improved by the spatial resolution of pansharpened images (OA increased by 7% for pixel-based approach). Also, regardless of pixel- or object-based classification approaches, the influence of the use of pansharpening is highly beneficial to classifying complex, natural, and mixed deciduous forest areas.


Sign in / Sign up

Export Citation Format

Share Document