An impact of ridgelet transform in handwritten recognition: A study on very large dataset of Kannada script

Author(s):  
C. Naveena ◽  
V.N. Manjunath Aradhya
2020 ◽  
Author(s):  
Medha Shekhar ◽  
Dobromir Rahnev

Humans have the metacognitive ability to judge the accuracy of their own decisions via confidence ratings. A substantial body of research has demonstrated that human metacognition is fallible but it remains unclear how metacognitive inefficiency should be incorporated into a mechanistic model of confidence generation. Here we show that, contrary to what is typically assumed, metacognitive inefficiency depends on the level of confidence. We found that, across five different datasets and four different measures of metacognition, metacognitive ability decreased with higher confidence ratings. To understand the nature of this effect, we collected a large dataset of 20 subjects completing 2,800 trials each and providing confidence ratings on a continuous scale. The results demonstrated a robustly nonlinear zROC curve with downward curvature, despite a decades-old assumption of linearity. This pattern of results was reproduced by a new mechanistic model of confidence generation, which assumes the existence of lognormally-distributed metacognitive noise. The model outperformed competing models either lacking metacognitive noise altogether or featuring Gaussian metacognitive noise. Further, the model could generate a measure of metacognitive ability which was independent of confidence levels. These findings establish an empirically-validated model of confidence generation, have significant implications about measures of metacognitive ability, and begin to reveal the underlying nature of metacognitive inefficiency.


2021 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Fernando Leonel Aguirre ◽  
Nicolás M. Gomez ◽  
Sebastián Matías Pazos ◽  
Félix Palumbo ◽  
Jordi Suñé ◽  
...  

In this paper, we extend the application of the Quasi-Static Memdiode model to the realistic SPICE simulation of memristor-based single (SLPs) and multilayer perceptrons (MLPs) intended for large dataset pattern recognition. By considering ex-situ training and the classification of the hand-written characters of the MNIST database, we evaluate the degradation of the inference accuracy due to the interconnection resistances for MLPs involving up to three hidden neural layers. Two approaches to reduce the impact of the line resistance are considered and implemented in our simulations, they are the inclusion of an iterative calibration algorithm and the partitioning of the synaptic layers into smaller blocks. The obtained results indicate that MLPs are more sensitive to the line resistance effect than SLPs and that partitioning is the most effective way to minimize the impact of high line resistance values.


2021 ◽  
Vol 48 (4) ◽  
pp. 37-40
Author(s):  
Nikolas Wehner ◽  
Michael Seufert ◽  
Joshua Schuler ◽  
Sarah Wassermann ◽  
Pedro Casas ◽  
...  

This paper addresses the problem of Quality of Experience (QoE) monitoring for web browsing. In particular, the inference of common Web QoE metrics such as Speed Index (SI) is investigated. Based on a large dataset collected with open web-measurement platforms on different device-types, a unique feature set is designed and used to estimate the RUMSI - an efficient approximation to SI, with machinelearning based regression and classification approaches. Results indicate that it is possible to estimate the RUMSI accurately, and that in particular, recurrent neural networks are highly suitable for the task, as they capture the network dynamics more precisely.


Author(s):  
Angélique Buton ◽  
Louis-Marie Bobay

Abstract Homologous recombination is a key pathway found in nearly all bacterial taxa. The recombination complex allows bacteria to repair DNA double strand breaks but also promotes adaption through the exchange of DNA between cells. In Proteobacteria, this process is mediated by the RecBCD complex, which relies on the recognition of a DNA motif named Chi to initiate recombination. The Chi motif has been characterized in Escherichia coli and analogous sequences have been found in several other species from diverse families, suggesting that this mode of action is widespread across bacteria. However, the sequences of Chi-like motifs are known for only five bacterial species: E. coli, Haemophilus influenzae, Bacillus subtilis, Lactococcus lactis and Staphylococcus aureus. In this study we detected putative Chi motifs in a large dataset of Proteobacteria and we identified four additional motifs sharing high sequence similarity and similar properties to the Chi motif of E. coli in 85 species of Proteobacteria. Most Chi motifs were detected in Enterobacteriaceae and this motif appears well conserved in this family. However, we did not detect Chi motifs for the majority of Proteobacteria, suggesting that different motifs are used in these species. Altogether these results substantially expand our knowledge on the evolution of Chi motifs and on the recombination process in bacteria.


2020 ◽  
Vol 92 (1) ◽  
pp. 261-274
Author(s):  
Jie Zhang ◽  
Huiyu Zhu ◽  
Siwei Yu ◽  
Jianwei Ma

Abstract The ability to calculate the seismogram of an earthquake at a local or regional scale is critical but challenging for many seismological studies because detailed knowledge about the 3D heterogeneities in the Earth’s subsurface, although essential, is often insufficient. Here, we present an application of compressed sensing technology that can help predict the seismograms of earthquakes at any position using data from past events randomly distributed in the same area in Jinggu County, Yunnan, China. This first data-driven approach for calculating seismograms generates a large dataset in 3D with a volume encompassing an active fault zone. The input number of earthquakes comprises only 1.27% of the total output events. We use the output data to create a database intended to find the best-matching waveform of a new event by applying an earthquake search engine, which instantly reveals the hypocenter and focal-mechanism solution.


Sign in / Sign up

Export Citation Format

Share Document