Characterization of power consumption in thin clients due to protocol data transmission over IEEE 802.11

Author(s):  
P. Simoens ◽  
B. Vankeirsbilck ◽  
F.A. Ali ◽  
L. Deboosere ◽  
F. De Turck ◽  
...  
2013 ◽  
Vol 56 (3) ◽  
Author(s):  
Zhang Qi-sheng ◽  
Deng Ming ◽  
Guo Jian ◽  
Luo Wei-bing ◽  
Wang Qi ◽  
...  

<p>There has been considerable development of seismic detectors over the last 80 years. However, there is still a need to further develop new earthquake exploration and data acquisition systems with high precision. In particular, for China to keep up with the latest technology of these systems, it is important to be involved in the research and development, instead of importing systems that soon fall behind the latest technology. In this study, the features of system-on-a-programmable-chip (SoPC) technology are analyzed and used to design a new digital seismic-data acquisition station. The hardware circuit of the station was developed, and the analog board and the main control data-transmission board were designed according to the needs of digital seismic-data acquisition stations. High-definition analog-to-digital converter sequential digital filter technology of the station (cascade integrator comb filter, finite impulse response digital filter) were incorporated to provide advantages to the acquisition station, such as high definition, large dynamic scope, and low noise. A specific data-transmission protocol was designed for the station, which ensured a transmission speed of 16 Mbps along a 55-m wire with low power consumption. Synchronic acquisition was researched and developed, so as to achieve accuracy better than 200 ns. The key technologies were integrated into the SoPC of the main control data-transmission board, so as to ensure high-resolution acquisition of the station, while improving the accuracy of the synchronic acquisition and data-transmission speed, lowering the power consumption, and preparing for the follow-up efforts to tape out.</p>


Author(s):  
Maksim Peregudov ◽  
Anatoliy Steshkovoy

Currently, centrally reserved access to the medium in the digital radio communication networks of the IEEE 802.11 family standards is an alternative to random multiple access to the environment such as CSMA/CA and is mainly used in the transmission voice and video messages in real time. Centrally reserved access to the environment determines the scope of interest in it from attackers. However, the assessment of effectiveness of centrally reserved access to the environment under the conditions of potentially possible destructive impacts was not carried out and therefore it is impossible to assess the contribution of such impacts to the decrease in the effectiveness of such access. Also, the stage establishing of centrally reserved access to the environment was not previously taken into account. Analytical model development of centrally reserved access to the environment under the conditions of destructive influences in digital radio communication networks of the IEEE 802.11 family standards. A mathematical model of centrally reserved access to the environment has been developed, taking into account not only the stage of its functioning, but also the stage of formation under the conditions of destructive influences by the attacker. Moreover, in the model the stage of establishing centrally reserved access to the medium displays a sequential relationship of such access, synchronization elements in digital radio communication networks and random multiple access to the medium of the CSMA/CA type. It was established that collisions in the data transmission channel caused by destructive influences can eliminate centrally reserved access to the medium even at the stage of its establishment. The model is applicable in the design of digital radio communication networks of the IEEE 802.11 family of standards, the optimization of such networks of the operation, and the detection of potential destructive effects by an attacker.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Betsy Dayana Marcela Chaparro-Rico ◽  
Daniele Cafolla ◽  
Marco Ceccarelli ◽  
Eduardo Castillo-Castaneda

This paper presents an experimental characterization of NURSE, a device for arm motion guidance. The laboratory setup and testing modes are presented to explain the experimental procedure. Two exercises for the upper limb exercise are used to test the NURSE behaviour, and successful results are presented. Trajectories and linear accelerations are tested when the device performs the two exercises without and with load. In addition, torque and power consumption are considered to check the NURSE behaviour.


2015 ◽  
Vol 76 ◽  
pp. 302-307 ◽  
Author(s):  
Aina Mardhiyah M. Ghazali ◽  
W.Z.W. Hasan ◽  
M.N. Hamidun ◽  
Ahmed H. Sabry ◽  
S.A. Ahmed ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3654 ◽  
Author(s):  
Xuanyu Wang ◽  
Weizhan Zhang ◽  
Xiang Gao ◽  
Jingyi Wang ◽  
Haipeng Du ◽  
...  

Mobile video applications are becoming increasingly prevalent and enriching the way people learn and are entertained. However, on mobile terminals with inherently limited resources, mobile video streaming services consume too much energy and bandwidth, which is an urgent problem to solve. At present, research on cost-effective mobile video streaming typically focuses on the management of data transmission. Among such studies, some new approaches consider the user’s behavior to further optimize data transmission. However, these studies have not adequately discussed the specific impact of the physical environment on user behavior. Therefore, this paper takes into account the environment-aware watching state and proposes a cost-effective mobile video streaming scheme to reduce power consumption and mobile data usage. First, the watching state is predicted by machine learning based on user behavior and the physical environment during a given time window. Second, based on the resulting prediction, a downloading algorithm is introduced based on the user equipment (UE) running mode in the LTE system and the VLC player. Finally, according to the corresponding experimental results obtained in a real-world environment, the proposed approach, compared to its benchmarks, effectively reduces the data usage (14.4% lower than that of energy-aware, on average) and power consumption (about 19% when there are screen touches) of mobile devices.


Sign in / Sign up

Export Citation Format

Share Document