Time series prediction of short term scintillations of Ku band satellite links in Sri Lanka

Author(s):  
Uthpala Premarathne ◽  
Kithsiri Samarasinghe
Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2392
Author(s):  
Antonello Rosato ◽  
Rodolfo Araneo ◽  
Amedeo Andreotti ◽  
Federico Succetti ◽  
Massimo Panella

Here, we propose a new deep learning scheme to solve the energy time series prediction problem. The model implementation is based on the use of Long Short-Term Memory networks and Convolutional Neural Networks. These techniques are combined in such a fashion that inter-dependencies among several different time series can be exploited and used for forecasting purposes by filtering and joining their samples. The resulting learning scheme can be summarized as a superposition of network layers, resulting in a stacked deep neural architecture. We proved the accuracy and robustness of the proposed approach by testing it on real-world energy problems.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yuting Bai ◽  
Xuebo Jin ◽  
Xiaoyi Wang ◽  
Tingli Su ◽  
Jianlei Kong ◽  
...  

The prediction information has effects on the emergency prevention and advanced control in various complex systems. There are obvious nonlinear, nonstationary, and complicated characteristics in the time series. Moreover, multiple variables in the time-series impact on each other to make the prediction more difficult. Then, a solution of time-series prediction for the multivariate was explored in this paper. Firstly, a compound neural network framework was designed with the primary and auxiliary networks. The framework attempted to extract the change features of the time series as well as the interactive relation of multiple related variables. Secondly, the structures of the primary and auxiliary networks were studied based on the nonlinear autoregressive model. The learning method was also introduced to obtain the available models. Thirdly, the prediction algorithm was concluded for the time series with multiple variables. Finally, the experiments on environment-monitoring data were conducted to verify the methods. The results prove that the proposed method can obtain the accurate prediction value in the short term.


2019 ◽  
Vol 57 (6) ◽  
pp. 114-119 ◽  
Author(s):  
Yuxiu Hua ◽  
Zhifeng Zhao ◽  
Rongpeng Li ◽  
Xianfu Chen ◽  
Zhiming Liu ◽  
...  

2010 ◽  
Vol 108-111 ◽  
pp. 1164-1169
Author(s):  
Xin Qi ◽  
Hong Liang ◽  
Zhen Li

According to the resources performance and status information provided by grid monitoring system, this paper adopts a trend-based time series prediction algorithm to predict short-term performance of the resources. Experiments show that the improved mixed trend-based prediction algorithm tracks the trend of data changes by giving more weight, simultaneously takes the different situations of data increases and decreases into account, so the improved algorithm is superior to the pre-improved and it improves the accuracy of the prediction effectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Guorong Zhu ◽  
Sha Peng ◽  
Yongchang Lao ◽  
Qichao Su ◽  
Qiujie Sun

Short-term electricity consumption data reflects the operating efficiency of grid companies, and accurate forecasting of electricity consumption helps to achieve refined electricity consumption planning and improve transmission and distribution transportation efficiency. In view of the fact that the power consumption data is nonstationary, nonlinear, and greatly influenced by the season, holidays, and other factors, this paper adopts a time-series prediction model based on the EMD-Fbprophet-LSTM method to make short-term power consumption prediction for an enterprise's daily power consumption data. The EMD model was used to decompose the time series into a multisong intrinsic mode function (IMF) and a residual component, and then the Fbprophet method was used to predict the IMF component. The LSTM model is used to predict the short-term electricity consumption, and finally the prediction value of the combined model is measured based on the weights of the single Fbprophet and LSTM models. Compared with the single time-series prediction model, the time-series prediction model based on the EMD-Fbprophet-LSTM method has higher prediction accuracy and can effectively improve the accuracy of short-term regional electricity consumption prediction.


2020 ◽  
Vol 185 ◽  
pp. 01052
Author(s):  
Runjie Shen ◽  
Ruimin Xing ◽  
Yiying Wang ◽  
Danqiong Hua ◽  
Ming Ma

As a large number of photovoltaic power stations are built and put into operation, the total amount of photovoltaic power generation accounts for an increasing proportion of the total electricity. The inability to accurately predict solar energy output has brought great uncertainty to the grid. Therefore, predicting the future power of photovoltaic fields is of great significance. According to different time scales, predictions are divided into long-term, medium-term and ultra-short-term predictions. The main difficulty of ultra-short-term forecasting lies in the power fluctuations caused by sudden and drastic changes in environmental factors. The shading of clouds is directly related to the irradiance received on the surface of the photovoltaic panel, which has become the main factor affecting the fluctuation of photovoltaic power generation. Therefore, sky images captured by conventional cameras installed near solar panels can be used to analyze cloud characteristics and improve the accuracy of ultra-short-term predictions. This paper uses historical power information of photovoltaic power plants and cloud image data, combined with machine learning methods, to provide ultra-short-term predictions of the power generation of photovoltaic power plants. First, the random forest method is used to use historical power generation data to establish a single time series prediction model to predict ultra-short-term power generation. Compared with the continuous model, the root mean square (RMSE) error of prediction is reduced by 28.38%. Secondly, the Unet network is used to segment the cloud image, and the cloud amount information is analyzed and input into the random forest prediction model to obtain the bivariate prediction model. The experimental results prove that, based on the cloud amount information contained in the cloud chart, the bivariate prediction model has an 11.56% increase in prediction accuracy compared with the single time series prediction model, and an increase of 36.66% compared with the continuous model.


Sign in / Sign up

Export Citation Format

Share Document