scholarly journals Association and dissociation kinetics of colicin E3 and immunity protein 3: Convergence of theory and experiment

2009 ◽  
Vol 12 (10) ◽  
pp. 2379-2382 ◽  
Author(s):  
Huan-Xiang Zhou
Nano Research ◽  
2021 ◽  
Author(s):  
Yishang Wu ◽  
Yufang Xie ◽  
Shuwen Niu ◽  
Yipeng Zang ◽  
Jinyan Cai ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Betty Ha ◽  
Kevin P. Larsen ◽  
Jingji Zhang ◽  
Ziao Fu ◽  
Elizabeth Montabana ◽  
...  

AbstractReverse transcription of the HIV-1 viral RNA genome (vRNA) is an integral step in virus replication. Upon viral entry, HIV-1 reverse transcriptase (RT) initiates from a host tRNALys3 primer bound to the vRNA genome and is the target of key antivirals, such as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Initiation proceeds slowly with discrete pausing events along the vRNA template. Despite prior medium-resolution structural characterization of reverse transcriptase initiation complexes (RTICs), higher-resolution structures of the RTIC are needed to understand the molecular mechanisms that underlie initiation. Here we report cryo-EM structures of the core RTIC, RTIC–nevirapine, and RTIC–efavirenz complexes at 2.8, 3.1, and 2.9 Å, respectively. In combination with biochemical studies, these data suggest a basis for rapid dissociation kinetics of RT from the vRNA–tRNALys3 initiation complex and reveal a specific structural mechanism of nucleic acid conformational stabilization during initiation. Finally, our results show that NNRTIs inhibit the RTIC and exacerbate discrete pausing during early reverse transcription.


1990 ◽  
Vol 10 (3-4) ◽  
pp. 137-148
Author(s):  
Adele J. Wolfson ◽  
Michele R. Hutchison ◽  
Janey S. Andrews ◽  
Kathleen J. Merriam

2009 ◽  
Vol 207 (1) ◽  
pp. 5-22
Author(s):  
Reema Taneja ◽  
Kennon C. Shelton ◽  
Ajit Sadana

Sign in / Sign up

Export Citation Format

Share Document