kinetic selectivity
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 1)

Synlett ◽  
2020 ◽  
Vol 31 (16) ◽  
pp. 1581-1586
Author(s):  
Imre Pápai ◽  
Petri M. Pihko ◽  
Juha H. Siitonen ◽  
Dániel Csókás

Total syntheses of stemoamide, 9a-epi-stemoamide, and 9a,10-epi-stemoamide by a convergent A + B ring-forming strategy is reported. The synthesis required a diastereoselective late-stage methylation of the ABC stemoamide core that successfully enabled access to three of the four possible diastereomeric structures. For the natural stemoamide series, the diastereoselectivity can be rationalized both by kinetic and thermodynamic arguments, whereas for the natural 9a-epi-stemoamide series, the kinetic selectivity is explained by the prepyramidalization of the relevant enolate.


2020 ◽  
Vol 374 (3) ◽  
pp. 438-451
Author(s):  
Eleanor Jing Yi Cheong ◽  
Pramod C. Nair ◽  
Rebecca Wan Yi Neo ◽  
Ho Thanh Tu ◽  
Fu Lin ◽  
...  

2020 ◽  
Author(s):  
Benjamin N. Bhawal ◽  
Julia C. Reisenbauer ◽  
Christian Ehinger ◽  
Bill Morandi

<p><i>Typically, reversible catalytic reactions operate under thermodynamic control and thus establishing a selective catalytic system poses a considerable challenge. In this manuscript, we report a reversible yet kinetically selective transfer hydrocyanation protocol. Selectivity is achieved by exploiting the lower barrier for C–CN oxidative addition and reductive elimination at benzylic positions in the absence of co-catalytic Lewis acid. The design of a novel type of HCN donor was crucial to realizing this practical, branched-selective, HCN-free transfer hydrocyanation. The synthetically useful resolution of a mixture of branched and linear nitrile isomers was also demonstrated to underline the value of reversible and selective transfer reactions. In a broader context, this work demonstrates that high kinetic selectivity can be achieved in reversible transfer reactions, thus opening new horizons for their synthetic applications.</i></p>


2020 ◽  
Author(s):  
Benjamin N. Bhawal ◽  
Julia C. Reisenbauer ◽  
Christian Ehinger ◽  
Bill Morandi

<p><i>Typically, reversible catalytic reactions operate under thermodynamic control and thus establishing a selective catalytic system poses a considerable challenge. In this manuscript, we report a reversible yet kinetically selective transfer hydrocyanation protocol. Selectivity is achieved by exploiting the lower barrier for C–CN oxidative addition and reductive elimination at benzylic positions in the absence of co-catalytic Lewis acid. The design of a novel type of HCN donor was crucial to realizing this practical, branched-selective, HCN-free transfer hydrocyanation. The synthetically useful resolution of a mixture of branched and linear nitrile isomers was also demonstrated to underline the value of reversible and selective transfer reactions. In a broader context, this work demonstrates that high kinetic selectivity can be achieved in reversible transfer reactions, thus opening new horizons for their synthetic applications.</i></p>


2019 ◽  
Vol 400 (6) ◽  
pp. 733-743 ◽  
Author(s):  
Markus Schweipert ◽  
Niklas Jänsch ◽  
Wisely Oki Sugiarto ◽  
Franz-Josef Meyer-Almes

Abstract Histone deacetylase 8 (HDAC8) is an established and validated target for T-cell lymphoma and childhood neuroblastoma. The active site binding pocket of HDAC8 is highly conserved among all zinc-containing representatives of the histone deacetylase (HDAC) family. This explains that most HDACs are unselectively recognized by similar inhibitors featuring a zinc binding group (ZBG), a hydrophobic linker and a head group. In the light of this difficulty, the creation of isoenzyme-selectivity is one of the major challenges in the development of HDAC inhibitors. In a series of trifluoromethylketone inhibitors of HDAC8 compound 10 shows a distinct binding mechanism and a dramatically increased residence time (RT) providing kinetic selectivity against HDAC4. Combining the binding kinetics results with computational docking and binding site flexibility analysis suggests that 10 occupies the conserved catalytic site as well as an adjacent transient sub-pocket of HDAC8.


2019 ◽  
Vol 20 (12) ◽  
pp. 3037 ◽  
Author(s):  
Xin Liu ◽  
Cai Liu ◽  
Changgong Meng

Crystallite aluminosilicates are inorganic microporous materials with well-defined pore-size and pore-structures, and have important industrial applications, including gas adsorption and separation, catalysis, etc. Crystallite aluminosilicates are commonly synthesized via hydrothermal processes, where the oligomerization of silicic acids is crucial. The mechanisms for the oligomerization of poly-silicic acids in neutral aqueous solution were systematically investigated by extensive first-principles-based calculations. We showed that oligomerization of poly-silicic acid molecules proceeds through the lateral attacking and simultaneously proton transfer from the approaching molecule for the formation of a 5-coordinated Si species as the transition state, resulting in the ejection of a water molecule from the formed poly-silicic acid. The barriers for this mechanism are in general more plausible than the conventional direct attacking of poly-silicic acid with reaction barriers in the range of 150–160 kJ/mol. The formation of linear or branched poly-silicic acids by intermolecular oligomerization is only slightly more plausible than the formation of cyclic poly-silicic acids via intramolecular oligomerization according to the reaction barriers (124.2–133.0 vs. 130.6–144.9 kJ/mol). The potential contributions of oligomer structures, such as the length of the linear oligomers, ring distortions and neighboring linear branches, etc., to the oligomerization were also investigated but found negligible. According to the small differences among the reaction barriers, we proposed that kinetic selectivity of the poly-silicic acids condensation would be weak in neutral aqueous solution and the formation of zeolite-like structures would be thermodynamics driven.


Sign in / Sign up

Export Citation Format

Share Document