scholarly journals The contribution of developmental experience vs. condition to life history, trait variation and individual differences

2016 ◽  
Vol 85 (4) ◽  
pp. 915-926 ◽  
Author(s):  
Nicholas DiRienzo ◽  
Pierre-Olivier Montiglio
2018 ◽  
Author(s):  
Jacob W. Malcom ◽  
Thomas E. Juenger ◽  
Mathew A. Leibold

ABSTRACTBackgroundIdentifying the molecular basis of heritable variation provides insight into the underlying mechanisms generating phenotypic variation and the evolutionary history of organismal traits. Life history trait variation is of central importance to ecological and evolutionary dynamics, and contemporary genomic tools permit studies of the basis of this variation in non-genetic model organisms. We used high density genotyping, RNA-Seq gene expression assays, and detailed phenotyping of fourteen ecologically important life history traits in a wild-caught panel of 32Daphnia pulexclones to explore the molecular basis of trait variation in a model ecological species.ResultsWe found extensive phenotypic and a range of heritable genetic variation (~0 < H2< 0.44) in the panel, and accordingly identify 75-261 genes—organized in 3-6 coexpression modules—associated with genetic variation in each trait. The trait-related coexpression modules possess well-supported promoter motifs, and in conjunction with marker variation at trans- loci, suggest a relatively small number of important expression regulators. We further identify a candidate genetic network with SNPs in eight known transcriptional regulators, and dozens of differentially expressed genes, associated with life history variation. The gene-trait associations include numerous un-annotated genes, but also support several a priori hypotheses, including an ecdysone-induced protein and several Gene Ontology pathways.ConclusionThe genetic and gene expression architecture ofDaphnialife history traits is complex, and our results provide numerous candidate loci, genes, and coexpression modules to be tested as the molecular mechanisms that underlieDaphniaeco-evolutionary dynamics.


2021 ◽  
Author(s):  
Carina Donne ◽  
Katelyn Larkin ◽  
Claire Adrian-Tucci ◽  
Abby Good ◽  
Carson Kephart ◽  
...  

Abstract Potamopyrgus antipodarum is a New Zealand freshwater snail that is invasive worldwide. While native P. antipodarum populations are characterized by frequent coexistence between obligately sexual and obligately asexual individuals, only the asexual snails are known to invade other ecosystems. Despite low genetic diversity and the absence of sex, invasive asexual P. antipodarum are highly successful. Here, we quantified variation in three key life-history traits across invasive P. antipodarum lineages and compared this variation to already documented variation in these same traits in asexual native lineages to provide a deeper understanding of why some lineages become invasive. In particular, we evaluated 1) if invasive lineages of P. antipodarum could be successful because they represent life-history variation from native ancestors that could facilitate invasion, and 2) if invasive populations with higher genetic variation would display relatively high phenotypic variation. We found that invasive snails displayed a non-representative sample of native diversity, with invasive snails growing more slowly and maturing more rapidly than their native counterparts. These results are consistent with expectations of a scenario where invasive lineages represent a subset of native variation that is beneficial in the setting of invasion. Nevertheless, there was no evidence for a relationship between genetic and phenotypic variation, indicating that increased genetic variation does not necessarily translate into greater phenotypic variation, and consistent with earlier studies suggesting an important role for phenotypic plasticity in the P. antipodarum invasion. Together, these results help illuminate the mechanisms driving the worldwide expansion of invasive populations of these snails.


2020 ◽  
Vol 10 (23) ◽  
pp. 13198-13210
Author(s):  
Kimberly M. F. Tuor ◽  
Daniel D. Heath ◽  
J. Mark Shrimpton

2010 ◽  
Vol 281 (2) ◽  
pp. 105-111 ◽  
Author(s):  
M. Márquez-García ◽  
M. Correa-Solís ◽  
M. A. Méndez

2018 ◽  
Vol 43 (6) ◽  
pp. 763-773
Author(s):  
Jana I. Wolf ◽  
Pekka Punttila ◽  
Perttu Seppä

2021 ◽  
Author(s):  
Anik Dutta ◽  
Fanny E. Hartmann ◽  
Carolina Sardinha Francisco ◽  
Bruce A. McDonald ◽  
Daniel Croll

AbstractThe adaptive potential of pathogens in novel or heterogeneous environments underpins the risk of disease epidemics. Antagonistic pleiotropy or differential resource allocation among life-history traits can constrain pathogen adaptation. However, we lack understanding of how the genetic architecture of individual traits can generate trade-offs. Here, we report a large-scale study based on 145 global strains of the fungal wheat pathogen Zymoseptoria tritici from four continents. We measured 50 life-history traits, including virulence and reproduction on 12 different wheat hosts and growth responses to several abiotic stressors. To elucidate the genetic basis of adaptation, we used genome-wide association mapping coupled with genetic correlation analyses. We show that most traits are governed by polygenic architectures and are highly heritable suggesting that adaptation proceeds mainly through allele frequency shifts at many loci. We identified negative genetic correlations among traits related to host colonization and survival in stressful environments. Such genetic constraints indicate that pleiotropic effects could limit the pathogen’s ability to cause host damage. In contrast, adaptation to abiotic stress factors was likely facilitated by synergistic pleiotropy. Our study illustrates how comprehensive mapping of life-history trait architectures across diverse environments allows to predict evolutionary trajectories of pathogens confronted with environmental perturbations.


Author(s):  
Gaotian Zhang ◽  
Jake D Mostad ◽  
Erik C Andersen

Abstract Life history traits underlie the fitness of organisms and are under strong natural selection. A new mutation that positively impacts a life history trait will likely increase in frequency and become fixed in a population (e.g. a selective sweep). The identification of the beneficial alleles that underlie selective sweeps provides insights into the mechanisms that occurred during the evolution of a species. In the global population of Caenorhabditis elegans, we previously identified selective sweeps that have drastically reduced chromosomal-scale genetic diversity in the species. Here, we measured the fecundity of 121 wild C. elegans strains, including many recently isolated divergent strains from the Hawaiian islands and found that strains with larger swept genomic regions have significantly higher fecundity than strains without evidence of the recent selective sweeps. We used genome-wide association (GWA) mapping to identify three quantitative trait loci (QTL) underlying the fecundity variation. Additionally, we mapped previous fecundity data from wild C. elegans strains and C. elegans recombinant inbred advanced intercross lines that were grown in various conditions and detected eight QTL using GWA and linkage mappings. These QTL show the genetic complexity of fecundity across this species. Moreover, the haplotype structure in each GWA QTL region revealed correlations with recent selective sweeps in the C. elegans population. North American and European strains had significantly higher fecundity than most strains from Hawaii, a hypothesized origin of the C. elegans species, suggesting that beneficial alleles that caused increased fecundity could underlie the selective sweeps during the worldwide expansion of C. elegans.


Sign in / Sign up

Export Citation Format

Share Document