scholarly journals Interactive range‐limit theory (iRLT): An extension for predicting range shifts

2020 ◽  
Vol 89 (4) ◽  
pp. 940-954 ◽  
Author(s):  
Alexej P. K. Sirén ◽  
Toni Lyn Morelli
2020 ◽  
Author(s):  
David W. Armitage ◽  
Stuart E. Jones

AbstractSpecies’ poleward ranges are thought to be primarily limited by climatic constraints rather than biotic interactions such as competition. However, theory suggests that a species’ tolerance to competition is reduced in harsh environments, such as at the extremes of its climatic niche. This implies that under certain conditions, interspecific competition near species’ range margins can prevent the establishment of populations into otherwise tolerable environments and results in geographic distributions being shaped by the interaction of climate and competition. We test this prediction by challenging an experimentally-parameterized mechanistic competition model to predict the poleward range boundaries of two widely co-occurring and ecologically-similar aquatic duckweed plants. We show that simple, mechanistic ecological niche models which include competition and thermal response terms best predict the northern range limits of our study species, outperforming competition-free mechanistic models and matching the predictive ability of popular statistical niche models fit to occurrence records. Next, using the theoretical framework of modern coexistence theory, we show that relative nonlinearity in competitors’ responses to temperature fluctuations maintains coexistence at the subordinate competitor’s poleward range boundary, highlighting the importance of this underappreciated fluctuation-dependent coexistence mechanism. Our results demonstrate the predictive utility of mechanistic niche models and support a more nuanced, interactive role of climate and species interactions in determining range boundaries, which may help explain the conflicting results from previous tests of classic range limit theory and contribute to a more mechanistic understanding of range dynamics under global change.


2009 ◽  
Vol 276 (1661) ◽  
pp. 1527-1534 ◽  
Author(s):  
G.J McInerny ◽  
J.R.G Turner ◽  
H.Y Wong ◽  
J.M.J Travis ◽  
T.G Benton

We investigate neutral evolution during range shifts in a strategic model of a metapopulation occupying a climate gradient. Using heritable, neutral markers, we track the spatio-temporal fate of lineages. Owing to iterated founder effects (‘mutation surfing’), survival of lineages derived from the leading range limit is enhanced. At trailing limits, where habitat suitability decreases, survival is reduced (mutations ‘wipe out’). These processes alter (i) the spatial spread of mutations, (ii) origins of persisting mutations and (iii) the generation of diversity. We show that large changes in neutral evolution can be a direct consequence of range shifting.


2020 ◽  
Vol 86 (1) ◽  
pp. 32-37
Author(s):  
Valeria A. Brodskaya ◽  
Oksana A. Molkova ◽  
Kira B. Zhogova ◽  
Inga V. Astakhova

Powder materials are widely used in the manufacture of electrochemical elements of thermal chemical sources of current. Electrochemical behavior of the powders depends on the shape and size of their particles. The results of the study of the microstructure and particles of the powders of vanadium (III), (V) oxides and lithium aluminate obtained by transmission electron and atomic force microscopy, X-ray diffraction and gas adsorption analyses are presented. It is found that the sizes of vanadium (III) and vanadium (V) oxide particles range within 70 – 600 and 40 – 350 nm, respectively. The size of the coherent-scattering regions of the vanadium oxide particles lies in the lower range limit which can be attributed to small size of the structural elements (crystallites). An average volumetric-surface diameter calculated on the basis of the surface specific area is close to the upper range limit which can be explained by the partial agglomeration of the powder particles. Unlike the vanadium oxide particles, the range of the particle size distribution of the lithium aluminate powder is narrower — 50 – 110 nm. The values of crystallite sizes are close to the maximum of the particle size distribution. Microstructural analysis showed that the particles in the samples of vanadium oxides have a rounded (V2O3) or elongated (V2O5) shape; whereas the particles of lithium aluminate powder exhibit lamellar structure. At the same time, for different batches of the same material, the particle size distribution is similar, which indicates the reproducibility of the technologies for their manufacture. The data obtained can be used to control the constancy of the particle size distribution of powder materials.


2018 ◽  
Vol 17 (2) ◽  
pp. 314 ◽  
Author(s):  
Brian M. Shamblin ◽  
Matthew H. Godfrey ◽  
S. Michelle Pate ◽  
William P. Thompson ◽  
Hope Sutton ◽  
...  

Castanea ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. 232
Author(s):  
Robert G. Laport ◽  
David Smith ◽  
Julienne Ng

Sign in / Sign up

Export Citation Format

Share Document