scholarly journals Structure and temporal dynamics of the bacterial communities associated to microhabitats of the coralOculina patagonica

2016 ◽  
Vol 18 (12) ◽  
pp. 4564-4578 ◽  
Author(s):  
Esther Rubio-Portillo ◽  
Fernando Santos ◽  
Manuel Martínez-García ◽  
Asunción de los Ríos ◽  
Carmen Ascaso ◽  
...  
Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexander Munoz ◽  
Matthew R. Hayward ◽  
Seth M. Bloom ◽  
Muntsa Rocafort ◽  
Sinaye Ngcapu ◽  
...  

Abstract Background Cervicovaginal bacterial communities composed of diverse anaerobes with low Lactobacillus abundance are associated with poor reproductive outcomes such as preterm birth, infertility, cervicitis, and risk of sexually transmitted infections (STIs), including human immunodeficiency virus (HIV). Women in sub-Saharan Africa have a higher prevalence of these high-risk bacterial communities when compared to Western populations. However, the transition of cervicovaginal communities between high- and low-risk community states over time is not well described in African populations. Results We profiled the bacterial composition of 316 cervicovaginal swabs collected at 3-month intervals from 88 healthy young Black South African women with a median follow-up of 9 months per participant and developed a Markov-based model of transition dynamics that accurately predicted bacterial composition within a broader cross-sectional cohort. We found that Lactobacillus iners-dominant, but not Lactobacillus crispatus-dominant, communities have a high probability of transitioning to high-risk states. Simulating clinical interventions by manipulating the underlying transition probabilities, our model predicts that the population prevalence of low-risk microbial communities could most effectively be increased by manipulating the movement between L. iners- and L. crispatus-dominant communities. Conclusions The Markov model we present here indicates that L. iners-dominant communities have a high probability of transitioning to higher-risk states. We additionally identify transitions to target to increase the prevalence of L. crispatus-dominant communities. These findings may help guide future intervention strategies targeted at reducing bacteria-associated adverse reproductive outcomes among women living in sub-Saharan Africa.


Aquaculture ◽  
2020 ◽  
Vol 528 ◽  
pp. 735498
Author(s):  
Zelong Zhao ◽  
Jingwei Jiang ◽  
Yongjia Pan ◽  
Ying Dong ◽  
Zhong Chen ◽  
...  

Plant Biology ◽  
2016 ◽  
Vol 18 (5) ◽  
pp. 824-834 ◽  
Author(s):  
D. F. R. Cleary ◽  
A. R. M. Polónia ◽  
A. I. Sousa ◽  
A. I. Lillebø ◽  
H. Queiroga ◽  
...  

2020 ◽  
Author(s):  
Ezequiel Santillan ◽  
Hari Seshan ◽  
Stefan Wuertz

AbstractDisturbance is thought to affect community assembly mechanisms, which in turn shape community structure and the overall function of the ecosystem. Here, we tested the effect of a continuous (press) xenobiotic disturbance on the function, structure, and assembly of bacterial communities within a wastewater treatment system. Two sets of four-liter sequencing batch reactors were operated in triplicate with and without the addition of 3-chloroaniline for a period of 132 days, following 58 days of acclimation after inoculation with sludge from a full-scale treatment plant. Temporal dynamics of bacterial community structure were derived from 16S rRNA gene amplicon sequencing. Community function, structure and assembly differed between press disturbed and undisturbed reactors. Temporal partitioning of assembly mechanisms via phylogenetic and non-phylogenetic null modelling analysis revealed that deterministic assembly prevailed for disturbed bioreactors, while the role of stochastic assembly was stronger for undisturbed reactors. Our findings are relevant because research spanning various disturbance types, environments and spatiotemporal scales is needed for a comprehensive understanding of the effects of press disturbances on assembly mechanisms, structure, and function of microbial communities.Graphical abstract


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Iratxe Zarraonaindia ◽  
Sarah M. Owens ◽  
Pamela Weisenhorn ◽  
Kristin West ◽  
Jarrad Hampton-Marcell ◽  
...  

ABSTRACTGrapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterial reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g.,Rhizobiaceaeand Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management.IMPORTANCEVine-associated bacterial communities may play specific roles in the productivity and disease resistance of their host plant. Also, the bacterial communities on grapes have the potential to influence the organoleptic properties of the wine, contributing to a regional terroir. Understanding that factors that influence these bacteria may provide insights into management practices to shape and craft individual wine properties. We show that soil serves as a key source of vine-associated bacteria and that edaphic factors and vineyard-specific properties can influence the native grapevine microbiome preharvest.


2011 ◽  
Vol 4 (1) ◽  
pp. 126-132 ◽  
Author(s):  
Amélia Camarinha-Silva ◽  
Ruy Jáuregui ◽  
Dietmar H. Pieper ◽  
Melissa L. Wos-Oxley

Sign in / Sign up

Export Citation Format

Share Document