Distinct molecular signatures in dissolved organic matter produced by viral lysis of marine cyanobacteria

2018 ◽  
Vol 20 (8) ◽  
pp. 3001-3011 ◽  
Author(s):  
Xiufeng Ma ◽  
Maureen L. Coleman ◽  
Jacob R. Waldbauer
2017 ◽  
Vol 113 ◽  
pp. 141-149 ◽  
Author(s):  
Franziska A. Lechleitner ◽  
Thorsten Dittmar ◽  
James U.L. Baldini ◽  
Keith M. Prufer ◽  
Timothy I. Eglinton

2014 ◽  
Vol 123 (1-2) ◽  
pp. 1-14 ◽  
Author(s):  
I. Dubinenkov ◽  
R. Flerus ◽  
P. Schmitt-Kopplin ◽  
G. Kattner ◽  
B. P. Koch

Author(s):  
Xilin Xiao ◽  
Weidong Guo ◽  
Xiaolin Li ◽  
Chao Wang ◽  
Xiaowei Chen ◽  
...  

Phytoplankton contribute almost half of the world's total primary production. The exudates and viral lysates of phytoplankton are two important forms of dissolved organic matter (DOM) in aquatic environments and fuel heterotrophic prokaryotic metabolism. However, the effect of viral infection on the composition and biological availability of phytoplankton-released DOM is poorly understood. Here, we investigated the optical characteristics and microbial utilization of the exudates and viral lysates of the ecologically important unicellular picophytoplankton Prochlorococcus. Our results showed that Prochlorococcus DOM produced by viral lysis (Pro-vDOM) with phages of three different morphotypes (myovirus P-HM2, siphovirus P-HS2 and podovirus P-SSP7) had higher humic-like fluorescence intensities, lower absorption coefficients and higher spectral slopes compared to DOM exuded by Prochlorococcus (Pro-exudate). The results indicate that viral infection altered the composition of Prochlorococcus-derived DOM and might contribute to the pool of oceanic humic-like DOM. Incubation with Pro-vDOM resulted in a greater dissolved organic carbon (DOC) degradation rate and decreases in the absorption spectral slope and heterotrophic bacterial growth rate compared to incubation with Pro-exudate, suggesting that Pro-vDOM was more bioavailable compared to Pro-exudate. In addition, the stimulated microbial community succession trajectories were significantly different between the Pro-exudate and Pro-vDOM treatments, indicating that viral lysates play an important role in shaping the heterotrophic bacterial community. Our study demonstrated that viral lysis altered the chemical composition and biological availability of DOM derived from Prochlorococcus, which is the numerically dominant phytoplankton in the oligotrophic ocean. Importance The unicellular picocyanobacterium Prochlorococcus is the numerically dominate phytoplankton in the oligotrophic ocean, contributing to the vast majority of marine primary production. Prochlorococcus releases a significant fraction of fixed organic matter into surrounding environment and supports a vital portion of heterotrophic bacterial activity. Viral lysis is an important biomass loss process of Prochlorococcus. Yet little is known about whether and how viral lysis affects Prochlorococcus-released dissolved organic matter (DOM). Our paper shows that viral infection alters the optical properties (such as the absorption coefficients, spectral slopes and fluorescence intensities) of released DOM and might contribute to a humic-like DOM pool and carbon sequestration in the ocean. Meanwhile, viral lysis also releases various intracellular labile DOM including amino acids, protein-like DOM and lower-molecular weight DOM, increases the bioavailability of DOM and shapes the successive trajectory of the heterotrophic bacterial community. Our study highlights the importance of viruses in impacting the DOM quality in the ocean.


Author(s):  
Anne M. Kellerman ◽  
Jorien Vonk ◽  
Stephanie McColaugh ◽  
David C. Podgorski ◽  
Elise van Winden ◽  
...  

2016 ◽  
Author(s):  
Michael Gonsior ◽  
Juliana Valle ◽  
Philippe Schmitt-Kopplin ◽  
Norbert Hertkorn ◽  
David Bastviken ◽  
...  

Abstract. Regions in the Amazon Basin have been associated with specific biogeochemical processes, but a detailed chemical classification of the abundant and ubiquitous dissolved organic matter (DOM), beyond specific indicator compounds and bulk measurements, has not yet been established. We sampled water from different locations in the Negro, Madeira/Jamari and Tapajós River areas to characterize the molecular DOM composition and distribution. Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with excitation emission matrix (EEM) fluorescence spectroscopy and Parallel Factor Analysis (PARAFAC) revealed a large proportion of ubiquitous DOM but also unique area-specific molecular signatures. Unique to the DOM of the Rio Negro area was the large abundance of high molecular weight, diverse hydrogen-deficient and highly oxidized molecular ions deviating from known lignin or tannin compositions, indicating substantial oxidative processing of these ultimately plant-derived polyphenols indicative of these black waters. In contrast, unique signatures in the Madeira/Jamari area were defined by presumably labile sulfur and nitrogen-containing molecules in this white water river system. Waters from the Tapajós confluence area did not show any substantial unique molecular signatures relative to those present in the Rio Madeira and Rio Negro, which implied a lower organic molecular complexity in this clear water tributary. Beside ubiquitous DOM at average H/C and O/C elemental ratios, a distinct and significant unique DOM pool prevailed in the black, white and clear water areas that were also highly correlated with EEM-PARAFAC components and define the frameworks for primary production and other aspects of aquatic life.


2016 ◽  
Vol 13 (14) ◽  
pp. 4279-4290 ◽  
Author(s):  
Michael Gonsior ◽  
Juliana Valle ◽  
Philippe Schmitt-Kopplin ◽  
Norbert Hertkorn ◽  
David Bastviken ◽  
...  

Abstract. Regions in the Amazon Basin have been associated with specific biogeochemical processes, but a detailed chemical classification of the abundant and ubiquitous dissolved organic matter (DOM), beyond specific indicator compounds and bulk measurements, has not yet been established. We sampled water from different locations in the Negro, Madeira/Jamari and Tapajós River areas to characterize the molecular DOM composition and distribution. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC) revealed a large proportion of ubiquitous DOM but also unique area-specific molecular signatures. Unique to the DOM of the Rio Negro area was the large abundance of high molecular weight, diverse hydrogen-deficient and highly oxidized molecular ions deviating from known lignin or tannin compositions, indicating substantial oxidative processing of these ultimately plant-derived polyphenols indicative of these black waters. In contrast, unique signatures in the Madeira/Jamari area were defined by presumably labile sulfur- and nitrogen-containing molecules in this white water river system. Waters from the Tapajós main stem did not show any substantial unique molecular signatures relative to those present in the Rio Madeira and Rio Negro, which implied a lower organic molecular complexity in this clear water tributary, even after mixing with the main stem of the Amazon River. Beside ubiquitous DOM at average H ∕ C and O ∕ C elemental ratios, a distinct and significant unique DOM pool prevailed in the black, white and clear water areas that were also highly correlated with EEM-PARAFAC components and define the frameworks for primary production and other aspects of aquatic life.


2010 ◽  
Vol 55 (4) ◽  
pp. 1467-1477 ◽  
Author(s):  
Aron Stubbins ◽  
Robert G. M. Spencer ◽  
Hongmei Chen ◽  
Patrick G. Hatcher ◽  
Kenneth Mopper ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 922
Author(s):  
Mara E. Heinrichs ◽  
Dennis A. Tebbe ◽  
Bernd Wemheuer ◽  
Jutta Niggemann ◽  
Bert Engelen

Viral lysis is a main mortality factor for bacteria in deep-sea sediments, leading to changing microbial community structures and the release of cellular components to the environment. Nature and fate of these compounds and the role of viruses for microbial diversity is largely unknown. We investigated the effect of viruses on the composition of bacterial communities and the pool of dissolved organic matter (DOM) by setting up virus-induction experiments using mitomycin C with sediments from the seafloor of the Bering Sea. At the sediment surface, no substantial prophage induction was detected, while incubations from 20 cm below seafloor showed a doubling of the virus-to-cell ratio. Ultra-high resolution mass spectrometry revealed an imprint of cell lysis on the molecular composition of DOM, showing an increase of molecular formulas typical for common biomolecules. More than 50% of these compounds were removed or transformed during incubation. The remaining material potentially contributed to the pool of refractory DOM. Next generation sequencing of the bacterial communities from the induction experiment showed a stable composition over time. In contrast, in the non-treated controls the abundance of dominant taxa (e.g., Gammaproteobacteria) increased at the expense of less abundant phyla. Thus, we conclude that viral lysis was an important driver in sustaining bacterial diversity, consistent with the “killing the winner” model.


Sign in / Sign up

Export Citation Format

Share Document