viral lysis
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 43)

H-INDEX

30
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Kyohei Fukuda ◽  
Mie Yoshida ◽  
Kensuke Noto ◽  
Kouichi Kitabayashi ◽  
Shinjirou Katsushima ◽  
...  

Abstract A prototype virus sampler using electrostatic precipitation has been developed to investigate aerosol infection by SARS-CoV-2. The sampler consists of a discharge electrode placed inside a vial, and a thin layer of viral lysis buffer at the bottom, working as a collection electrode. The sampler was operated with the sampling air flow rate of 40 L/min. Collection efficiency of the sampler is about 80% for 25nm to 5.0µm diameter particles. We sampled the air of a food court of a commercial facility, a connecting corridor of a clouded train station, and two office rooms (A and B) in September 2021, just after the 5th peak of COVID-19 in Japan. The analysis using a RT-qPCR detected the virus RNA in the air of the office A, B and the food court. Estimated concentration of the virus in the air determined by calibration curve was 2.0 x 102, 7.8 x 102, and 0.6 - 2.4 x 102 copies/m3, in the office A, B, and the food court, respectively. These results indicate that the sampler using electrostatic precipitation can detect SARS-CoV-2 in indoor air. It could be developed as a risk assessment method for aerosol infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanhui Yang ◽  
Toshi Nagata

Viral production is a key parameter for assessing virus-mediated biogeochemical cycles. One widely used method for the determination of viral production, called the virus reduction assay, reduces viral abundance, while maintaining bacterial abundance, using 0.2-μm pore-size filters. Viral production is estimated from the increase of viral abundance during incubation. We hypothesized that small-cell-sized bacterial communities can pass through 0.2-μm filters and drive viral production, representing a missing fraction of viral production that is missed by the virus reduction assay. Coastal seawater was filtered through 0.2-μm filters and diluted with virus-free seawater. Viral production in the <0.2-μm filtrate was estimated from changes in viral abundance determined through flow cytometry. We found that viruses were produced in the <0.2-μm communities, which were strongly enriched with low nucleic acid content bacteria. Estimated viral production in the <0.2-μm filtrates accounted for up to 43% of total viral production and 10% of dissolved organic carbon production mediated by viral lysis of bacterial cells. By not considering viral production in these <0.2-μm communities, the virus reduction assay may underestimate viral production. Virus–bacteria interactions in <0.2-μm communities may represent a significant and overlooked role of viruses in marine food webs and carbon fluxes.


2021 ◽  
Author(s):  
Jinny Wu Yang ◽  
Feng-Hsun Chang ◽  
Yi-Chun Yeh ◽  
An-Yi Tsai ◽  
Kuo-Ping Chiang ◽  
...  

Trade-offs between competition ability and invulnerability to predation are important mechanisms explaining how predation promotes bacterial diversity. However, existence of these trade-offs has apparently not been investigated in natural marine bacterial communities. Here, we address this question with growth-based measurements for each marine bacterial taxon by conducting on-board dilution experiments to manipulate predation pressure and using high-throughput sequencing to assess the response of bacterial communities. We determined that bacterial taxa with a higher predation-free growth rate were accompanied with higher predation-caused mortality, supporting existence of competitiveness-invulnerability trade-off. This trade-off was stronger and more consistent under viral lysis than protist grazing. In addition, predation generally flattened out the rank-abundance distribution and increased the evenness and richness of the bacterial community. These findings supported the 'Kill-the-Winner' hypothesis. All experiments supported a significant competitiveness-invulnerability trade-off, but there was substantial variation among bacterial communities in response to predation across experiments conducted in various sites and seasons. Therefore, we inferred that the Kill-the-Winner hypothesis is important but likely not the only deterministic mechanism explaining how predation shapes bacterial assemblages in natural marine systems.


Author(s):  
O.A. Stepanova ◽  
◽  
P.V. Gaisky ◽  
S.A. Sholar ◽  
◽  
...  

The change in sensitivity to viral infection of cultures of three species of Black Sea microalgae (Tetraselmis viridis, Dunaliella viridis and Phaeodactylum tricornutum) after exposure to a constant unidirectional magnetic field with a magnetic induction of 600 G is experimentally studied. The studies were carried out with using a developed laboratory installation. With the duration of the experiments 24 h and 48 h, it was recorded that being in a magnetic field resulted in an increase in the resistance to viral lysis in microalgae T. viridis, its decrease in P. tricornutum and no changes in D. viridis. We assume that the revealed changes in the sensitivity of microalgae to viral infection after exposure to a magnetic field are due to their species characteristics and selectivity.


Diversity ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 426
Author(s):  
Pei-Chi Ho ◽  
Gwo-Ching Gong ◽  
Chih-Hao Hsieh ◽  
Patrichka Wei-Yi Chen ◽  
An-Yi Tsai

Viral production (VP) and bacterial mortality by viral lysis critically influence the production and mortality of aquatic bacteria. Although bacterial production, mortality by viral lysis, and viral density have been found to exhibit diel variations, the diel change in viral production has rarely been investigated. In this study, we conducted two diel dilution incubation experiments in a semi-enclosed, nutrient-rich coastal region in northeastern Taiwan to estimate the diel viral production and the mortality by viral lysis. We also compared two methods (linear regression between viral density and time versus arithmetic mean of VP during incubation) of estimating viral production. We found that viral production estimated by linear regression and bacterial mortality by viral lysis were higher during the daytime than during the nighttime. A possible explanation for the high viral production at daytime is that the bacterial community was composed of cell types with higher burst sizes at daytime. We further argued that the classical linear regression method can be used only when viral density significantly linearly increases with time, which does not always occur in dilution incubations. This study offered observations of diel variation in viral dynamics and discussed the methods estimating viral production in a marine environment.


2021 ◽  
Vol 22 (16) ◽  
pp. 9051
Author(s):  
Cole W. D. Peters ◽  
Fares Nigim

The dogma of engineering oncolytic viral vectors has shifted from emphasizing the viral lysis of individual cancer cells to the recruitment and coordination of the adaptive immune system to clear the tumor. To accomplish this, researchers have been adding several classes of transgenes to their preferred viral platforms. The most prevalent of these include antibodies and targeting moieties, interleukins and cytokines, and genes which rely on small molecule co-administration for tumor killing. Most current vectors rely exclusively on one of these types of transgenes to elicit the desired immune response to clear tumors, but are not mutually exclusive, with several larger OVs armed with several of these factors. The common theme of emerging armed vectors is to simply initiate or enhance infiltration of effector CD8+ T cells to clear the tumor locally at OV infection sites, and systemically throughout the body where the OV has not infected tumor cells. The precision of oncolytic vectors to target a cell type or tissue remains its key advantage over small-molecule drugs. Unlike chemo- and other drug therapies, viral vectors can be made to specifically infect and grow within tumor cells. This ensures localized expression of the therapeutic transgene to the diseased tissue, thereby limiting systemic toxicity. This review will examine the immunomodulating transgenes of current OVs, describe their general effect on the immune system, and provide the rationale for each vector’s use in clearing its targeted tumor.


2021 ◽  
Vol 12 ◽  
Author(s):  
Angela Landolfi ◽  
A. E. Friederike Prowe ◽  
Markus Pahlow ◽  
Christopher J. Somes ◽  
Chia-Te Chien ◽  
...  

The ability of marine diazotrophs to fix dinitrogen gas (N2) is one of the most influential yet enigmatic processes in the ocean. With their activity diazotrophs support biological production by fixing about 100–200 Tg N/year and turning otherwise unavailable dinitrogen into bioavailable nitrogen (N), an essential limiting nutrient. Despite their important role, the factors that control the distribution of diazotrophs and their ability to fix N2 are not fully elucidated. We discuss insights that can be gained from the emerging picture of a wide geographical distribution of marine diazotrophs and provide a critical assessment of environmental (bottom-up) versus trophic (top-down) controls. We expand a simplified theoretical framework to understand how top-down control affects competition for resources that determine ecological niches. Selective mortality, mediated by grazing or viral-lysis, on non-fixing phytoplankton is identified as a critical process that can broaden the ability of diazotrophs to compete for resources in top-down controlled systems and explain an expanded ecological niche for diazotrophs. Our simplified analysis predicts a larger importance of top-down control on competition patterns as resource levels increase. As grazing controls the faster growing phytoplankton, coexistence of the slower growing diazotrophs can be established. However, these predictions require corroboration by experimental and field data, together with the identification of specific traits of organisms and associated trade-offs related to selective top-down control. Elucidation of these factors could greatly improve our predictive capability for patterns and rates of marine N2 fixation. The susceptibility of this key biogeochemical process to future changes may not only be determined by changes in environmental conditions but also via changes in the ecological interactions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alejandro Castellanos-Gonzalez ◽  
Thomas R. Shelite ◽  
Nicole Lloyd ◽  
Aygul Sadiqova ◽  
Ren Ping ◽  
...  

AbstractThe pandemic of 2019 caused by the novel coronavirus (SARS-CoV-2) is still rapidly spreading worldwide. Nucleic acid amplification serves as the gold standard method for confirmation of COVID-19 infection. However, challenges faced for diagnostic laboratories from undeveloped countries includes shortage of kits and supplies to purify viral RNA. Therefore, it is urgent to validate alternative nucleic acid isolation methods for SARS-CoV-2. Our results demonstrate that a concentrated viral lysis amplification buffer (vLAB) prepared with the nonionic detergent IGEPAL enables qualitative detection of SARS-CoV-2 by direct Reverse Transcriptase-Polymerase Chain Reaction (dRT-PCR). Furthermore, vLAB was effective in inactivating SARS-CoV-2. Since this method is inexpensive and no RNA purification equipment or additional cDNA synthesis is required, this dRT-PCR with vLAB should be considered as an alternative method for qualitative detection of SARS-CoV-2.


2021 ◽  
Author(s):  
Kevin Xu Zhong ◽  
Amy M Chan ◽  
Jennifer F Wirth ◽  
Curtis A Suttle

Microbes are by far the dominant biomass in the world's oceans and drive biogeochemical cycles that are critical to life on Earth. The composition of marine microbial communities is highly dynamic spatially and temporally, with consequent effects on their functional roles. In part, these changes in composition result from viral lysis, which is taxon-specific and estimated to account for about half of marine microbial mortality. Here we determined taxon-specific cell lysis of prokaryotes in coastal seawater by sequencing extracellular and cellular ribosomal RNA (rRNA). We detected lysis in about 15% of the 16946 prokaryotic amplicon sequence variants (ASVs) identified, and lysis of up to 34% of the ASVs within a water sample. High lysis was most commonly associated with rare but typically highly productive bacteria, while relatively low lysis was more common in taxa that are often abundant, consistent with the proposed model of "kill the winner", and the idea that less abundant taxa generally experience higher relative lysis than dominant taxa. These results provide an explanation to the long-standing conundrum of why highly productive bacteria that are readily isolated from seawater are often in very low abundance.


2021 ◽  
Author(s):  
Tristan E. G. Biggs ◽  
Jef Huisman ◽  
Corina P. D. Brussaard

AbstractPhytoplankton form the base of marine food webs and are a primary means for carbon export in the Southern Ocean, a key area for global pCO2 drawdown. Viral lysis and grazing have very different effects on microbial community dynamics and carbon export, yet, very little is known about the relative magnitude and ecological impact of viral lysis on natural phytoplankton communities, especially in Antarctic waters. Here, we report on the temporal dynamics and relative importance of viral lysis rates, in comparison to grazing, for Antarctic nano- and pico-sized phytoplankton of varied taxonomy and size over a full productive season. Our results show that viral lysis was a major loss factor throughout the season, responsible for roughly half (58%) of seasonal phytoplankton carbon losses. Viral lysis appeared critically important for explaining temporal dynamics and for obtaining a complete seasonal mass balance of Antarctic phytoplankton. Group-specific responses indicated a negative correlation between grazing and viral losses in Phaeocystis and picoeukaryotes, while for other phytoplankton groups losses were more evenly spread throughout the season. Cryptophyte mortality was dominated by viral lysis, whereas small diatoms were mostly grazed. Larger diatoms dominated algal carbon flow and a single ‘lysis event’ directed >100% of daily carbon production away from higher trophic levels. This study highlights the need to consider viral lysis of key Antarctic phytoplankton for a better understanding of microbial community interactions and more accurate predictions of organic matter flux in this climate-sensitive region.


Sign in / Sign up

Export Citation Format

Share Document