scholarly journals Immortalized Rat Whisker Dermal Papilla Cells Cooperate with Mouse Immature Hair Follicle Buds to Activate Type IV Procollagenases in Collagen Matrix Coculture: Correlation with Ability to Promote Hair Follicle Development in Nude Mouse Grafts

1995 ◽  
Vol 105 (2) ◽  
pp. 177-183 ◽  
Author(s):  
Aline B. Scandurro ◽  
Qizhi Wang ◽  
Linda Goodman ◽  
Stephen Ledbetter ◽  
Thomas P. Dooley ◽  
...  
2018 ◽  
Vol 500 (2) ◽  
pp. 325-332 ◽  
Author(s):  
Lijuan Zhou ◽  
Han Wang ◽  
Jing Jing ◽  
Lijuan Yu ◽  
Xianjie Wu ◽  
...  

2001 ◽  
Vol 71 (2) ◽  
pp. 171-178 ◽  
Author(s):  
Lars Mecklenburg ◽  
Motonobu Nakamura ◽  
John P. Sundberg ◽  
Ralf Paus

2022 ◽  
Vol 65 (1) ◽  
pp. 11-19
Author(s):  
Yu Cui ◽  
Chunliang Wang ◽  
Lirong Liu ◽  
Nan Liu ◽  
Jianning He

Abstract. The objective of this study was to identify the expression and distribution of EPHA4 and Ephrin A3 genes in the development and morphogenesis of hair follicles in fine-wool sheep. The results could lay a theoretical basis for understanding the molecular mechanism that regulates hair follicle development. The skin of Aohan fine-wool sheep at different developmental stages (embryonic day 90, E90d, and 120, E120d, and postnatal day 1, B1d, and 30, B30d) were selected. Real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry were used to study the levels of mRNA and proteins, respectively. The RT-qPCR results showed that the mRNA expression level of EPHA4 at B1d was significantly lower than at E120d (p<0.01). The expression of Ephrin A3 at E120d was significantly higher than that at E90d and B1d (p<0.01). Immunohistochemical detection results showed that the level and localisation of EPHA4 and Ephrin A3 proteins had spatial and temporal specificity. EPHA4 expression in dermal papilla cells might be important for inducing Aohan fine-hair follicle regeneration and for controlling the properties of the hair. Ephrin A3 might play an important role in the redifferentiation of secondary hair follicles and might also be involved in the inhibition of apoptosis-related gene expression in hair follicles. The Ephrin A3 signalling pathway might accelerate the growth of fine-hair follicles and increase the density of hair follicles.


1995 ◽  
Vol 104 (5) ◽  
pp. 21-22 ◽  
Author(s):  
Tonja Kartasova ◽  
Aline B. Scandurro ◽  
Mitchell F. Denning ◽  
Stuart H. Yuspa ◽  
Ulrike Lichti ◽  
...  

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 105
Author(s):  
Kristelle Hughes ◽  
Raimana Ho ◽  
Stéphane Greff ◽  
Gaëtan Herbette ◽  
Edith Filaire ◽  
...  

The term cosmetopoeia refers to the use of plants in folks’ cosmetics. The aerial parts of Bidens pilosa L., the leaves of Calophyllum inophyllum L. and the fruits of Fagraea berteroana A.Gray ex Benth are traditionally used in French Polynesia for hair and skin care. During the hair cycle, dermal papilla cells and their interaction with epithelial cells are essential to promote hair follicle elongation. The aim of our investigations was the identification of metabolites from these three plants and chemical families responsible for their hair growth activity. A bioactivity-based molecular network was produced by mapping the correlation between features obtained from LC-MS/MS data and dermal papilla cell proliferation, using the Pearson correlation coefficient. The analyses pointed out glycosylated flavonols and phenolic acids from B. pilosa and C. inophyllum, along with C-flavonoids, iridoids and secoiridoids from F. berteroana, as potential bioactive molecules involved in the proliferation of hair follicle dermal papilla cells. Our results highlight the metabolites of the plant species potentially involved in the induction of hair follicle growth and support the traditional uses of these plants in hair care.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243507
Author(s):  
Zhihong Wu ◽  
Erhan Hai ◽  
Zhengyang Di ◽  
Rong Ma ◽  
Fangzheng Shang ◽  
...  

Objective Mature hair follicles represent an important stage of hair follicle development, which determines the stability of hair follicle structure and its ability to enter the hair cycle. Here, we used weighted gene co-expression network analysis (WGCNA) to identify hub genes of mature skin and hair follicles in Inner Mongolian cashmere goats. Methods We used transcriptome sequencing data for the skin of Inner Mongolian cashmere goats from fetal days 45–135 days, and divided the co expressed genes into different modules by WGCNA. Characteristic values were used to screen out modules that were highly expressed in mature skin follicles. Module hub genes were then selected based on the correlation coefficients between the gene and module eigenvalue, gene connectivity, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results were confirmed by quantitative polymerase chain reaction (qPCR). Results Ten modules were successfully defined, of which one, with a total of 3166 genes, was selected as a specific module through sample and gene expression pattern analyses. A total of 584 candidate hub genes in the module were screened by the correlation coefficients between the genes and module eigenvalue and gene connectivity. Finally, GO/KEGG functional enrichment analyses detected WNT10A as a key gene in the development and maturation of skin hair follicles in fetal Inner Mongolian cashmere goats. qPCR showed that the expression trends of 13 genes from seven fetal skin samples were consistent with the sequencing results, indicating that the sequencing results were reliable.n


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Subhrangsu S Mandal ◽  
Khairul I Ansari ◽  
Imran Hussain ◽  
Sahba Kasiri ◽  
Bishakha Shrestha

Sign in / Sign up

Export Citation Format

Share Document