The Nude Mouse Skin Phenotype: The Role of Foxn1 in Hair Follicle Development and Cycling

2001 ◽  
Vol 71 (2) ◽  
pp. 171-178 ◽  
Author(s):  
Lars Mecklenburg ◽  
Motonobu Nakamura ◽  
John P. Sundberg ◽  
Ralf Paus
2008 ◽  
Vol 19 (5-6) ◽  
pp. 415-426 ◽  
Author(s):  
M. McDowall ◽  
N.M. Edwards ◽  
C.A.B. Jahoda ◽  
P.I. Hynd

1995 ◽  
Vol 104 (5) ◽  
pp. 21-22 ◽  
Author(s):  
Tonja Kartasova ◽  
Aline B. Scandurro ◽  
Mitchell F. Denning ◽  
Stuart H. Yuspa ◽  
Ulrike Lichti ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243507
Author(s):  
Zhihong Wu ◽  
Erhan Hai ◽  
Zhengyang Di ◽  
Rong Ma ◽  
Fangzheng Shang ◽  
...  

Objective Mature hair follicles represent an important stage of hair follicle development, which determines the stability of hair follicle structure and its ability to enter the hair cycle. Here, we used weighted gene co-expression network analysis (WGCNA) to identify hub genes of mature skin and hair follicles in Inner Mongolian cashmere goats. Methods We used transcriptome sequencing data for the skin of Inner Mongolian cashmere goats from fetal days 45–135 days, and divided the co expressed genes into different modules by WGCNA. Characteristic values were used to screen out modules that were highly expressed in mature skin follicles. Module hub genes were then selected based on the correlation coefficients between the gene and module eigenvalue, gene connectivity, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results were confirmed by quantitative polymerase chain reaction (qPCR). Results Ten modules were successfully defined, of which one, with a total of 3166 genes, was selected as a specific module through sample and gene expression pattern analyses. A total of 584 candidate hub genes in the module were screened by the correlation coefficients between the genes and module eigenvalue and gene connectivity. Finally, GO/KEGG functional enrichment analyses detected WNT10A as a key gene in the development and maturation of skin hair follicles in fetal Inner Mongolian cashmere goats. qPCR showed that the expression trends of 13 genes from seven fetal skin samples were consistent with the sequencing results, indicating that the sequencing results were reliable.n


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Subhrangsu S Mandal ◽  
Khairul I Ansari ◽  
Imran Hussain ◽  
Sahba Kasiri ◽  
Bishakha Shrestha

2017 ◽  
Vol 15 (3) ◽  
pp. 377-386
Author(s):  
Seunghee Bae ◽  
Ki-Heon Lee ◽  
In-Ho Lee ◽  
Mi Kyung Kim ◽  
Jae Ho Lee

2019 ◽  
Vol 234 (11) ◽  
pp. 20329-20341 ◽  
Author(s):  
Bohao Zhao ◽  
Yang Chen ◽  
Naisu Yang ◽  
Qiuran Chen ◽  
Zhiyuan Bao ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 466 ◽  
Author(s):  
Pietro Gentile ◽  
Simone Garcovich

The use of stem cells has been reported to improve hair regrowth in several therapeutic strategies, including reversing the pathological mechanisms, that contribute to hair loss, regeneration of hair follicles, or creating hair using the tissue-engineering approach. Although various promising stem cell approaches are progressing via pre-clinical models to clinical trials, intraoperative stem cell treatments with a one-step procedure offer a quicker result by incorporating an autologous cell source without manipulation, which may be injected by surgeons through a well-established clinical practice. Many authors have concentrated on adipose-derived stromal vascular cells due to their ability to separate into numerous cell genealogies, platelet-rich plasma for its ability to enhance cell multiplication and neo-angiogenesis, as well as human follicle mesenchymal stem cells. In this paper, the significant improvements in intraoperative stem cell approaches, from in vivo models to clinical investigations, are reviewed. The potential regenerative instruments and functions of various cell populaces in the hair regrowth process are discussed. The addition of Wnt signaling in dermal papilla cells is considered a key factor in stimulating hair growth. Mesenchymal stem cell-derived signaling and growth factors obtained by platelets influence hair growth through cellular proliferation to prolong the anagen phase (FGF-7), induce cell growth (ERK activation), stimulate hair follicle development (β-catenin), and suppress apoptotic cues (Bcl-2 release and Akt activation).


Sign in / Sign up

Export Citation Format

Share Document