Two-stage Keypoint Detection Scheme for Region Duplication Forgery Detection in Digital Images

2017 ◽  
Vol 63 (1) ◽  
pp. 102-111 ◽  
Author(s):  
Mahmoud Emam ◽  
Qi Han ◽  
Hongli Zhang
Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 706 ◽  
Author(s):  
Chengyou Wang ◽  
Zhi Zhang ◽  
Xiao Zhou

The popularity of image editing software has made it increasingly easy to alter the content of images. These alterations threaten the authenticity and integrity of images, causing misjudgments and possibly even affecting social stability. The copy-move technique is one of the most commonly used approaches for manipulating images. As a defense, the image forensics technique has become popular for judging whether a picture has been tampered with via copy-move, splicing, or other forgery techniques. In this paper, a scheme based on accelerated-KAZE (A-KAZE) and speeded-up robust features (SURF) is proposed for image copy-move forgery detection (CMFD). It is difficult for most keypoint-based CMFD methods to obtain sufficient points in smooth regions. To remedy this defect, the response thresholds for the A-KAZE and SURF feature detection stages are set to small values in the proposed method. In addition, a new correlation coefficient map is presented, in which the duplicated regions are demarcated, combining filtering and mathematical morphology operations. Numerous experiments are conducted to demonstrate the effectiveness of the proposed method in searching for duplicated regions and its robustness against distortions and post-processing techniques, such as noise addition, rotation, scaling, image blurring, joint photographic expert group (JPEG) compression, and hybrid image manipulation. The experimental results demonstrate that the performance of the proposed scheme is superior to that of other tested CMFD methods.


Author(s):  
Marziye Shahrokhi ◽  
Alireza Akoushideh ◽  
Asadollah Shahbahrami

Today, manipulating, storing, and sending digital images are simple and easy because of the development of digital imaging devices from hardware and software points of view. Digital images are used in different contexts of people’s lives such as news, forensics, and so on. Therefore, the reliability of received images is a question that often occupies the viewer’s mind and the authenticity of digital images is increasingly important. Detecting a forged image as a genuine one as well as detecting a genuine image as a forged one can sometimes have irreparable consequences. For example, an image that is available from the scene of a crime can lead to a wrong decision if it is detected incorrectly. In this paper, we propose a combination method to improve the accuracy of copy–move forgery detection (CMFD) reducing the false positive rate (FPR) based on texture attributes. The proposed method uses a combination of the scale-invariant feature transform (SIFT) and local binary pattern (LBP). Consideration of texture features around the keypoints detected by the SIFT algorithm can be effective to reduce the incorrect matches and improve the accuracy of CMFD. In addition, to find more and better keypoints some pre-processing methods have been proposed. This study was evaluated on the COVERAGE, GRIP, and MICC-F220 databases. Experimental results show that the proposed method without clustering or segmentation and only with simple matching operations, has been able to earn the true positive rates of 98.75%, 95.45%, and 87% on the GRIP, MICC-F220, and COVERAGE datasets, respectively. Also, the proposed method, with FPRs from 17.75% to 3.75% on the GRIP dataset, has been able to achieve the best results.


Author(s):  
Nadheer Younus Hussien ◽  
Rasha O. Mahmoud ◽  
Hala Helmi Zayed

Digital image forgery is a serious problem of an increasing attention from the research society. Image splicing is a well-known type of digital image forgery in which the forged image is synthesized from two or more images. Splicing forgery detection is more challenging when compared with other forgery types because the forged image does not contain any duplicated regions. In addition, unavailability of source images introduces no evidence about the forgery process. In this study, an automated image splicing forgery detection scheme is presented. It depends on extracting the feature of images based on the analysis of color filter array (CFA). A feature reduction process is performed using principal component analysis (PCA) to reduce the dimensionality of the resulting feature vectors. A deep belief network-based classifier is built and trained to classify the tested images as authentic or spliced images. The proposed scheme is evaluated through a set of experiments on Columbia Image Splicing Detection Evaluation Dataset (CISDED) under different scenarios including adding postprocessing on the spliced images such JPEG compression and Gaussian Noise. The obtained results reveal that the proposed scheme exhibits a promising performance with 95.05% precision, 94.05% recall, 94.05% true positive rate, and 98.197% accuracy. Moreover, the obtained results show the superiority of the proposed scheme compared to other recent splicing detection method.


Sign in / Sign up

Export Citation Format

Share Document