Intraguild interference of spiders and ladybirds in a cotton field: Evidence from their active time and aphid control efficiency

Author(s):  
Guifeng Wang ◽  
Zhaoke Dong ◽  
Lili Li ◽  
Zengbin Lu ◽  
Chao Li ◽  
...  
Author(s):  
Cristian Cocconcelli ◽  
Bongsuk Park ◽  
Jian Zou ◽  
George Lopp ◽  
Reynaldo Roque

Reflective cracking is frequently reported as the most common distress affecting resurfaced pavements. An asphalt rubber membrane interlayer (ARMI) approach has been traditionally used in Florida to mitigate reflective cracking. However, recent field evidence has raised doubts about the effectiveness of the ARMI when placed near the surface, indicating questionable benefits to reflective cracking and increased instability rutting potential. The main purpose of this research was to develop guidelines for an effective alternative to the ARMI for mitigation of near-surface reflective cracking in overlays on asphalt pavement. Fourteen interlayer mixtures, covering three aggregate types widely used in Florida, and two nominal maximum aggregate sizes (NMAS) were designed according to key characteristics identified for mitigation of reflective cracking, that is, sufficient gradation coarseness and high asphalt content. The dominant aggregate size range—interstitial component (DASR-IC) model was used for the design of all mixture gradations. A composite specimen interface cracking (CSIC) test was employed to evaluate reflective cracking performance of interlayer systems. In addition, asphalt pavement analyzer (APA) tests were performed to determine whether the interlayer mixtures had sufficient rutting resistance. The results indicated that interlayer mixtures designed with lower compaction effort, reduced design air voids, and coarser gradation led to more cost-effective fracture-tolerant and shear-resistant (FTSR) interlayers. Therefore, preliminary design guidelines including minimum effective film thickness and maximum DASR porosity requirements were proposed for 9.5-mm NMAS (35 µm and 50%) and 4.75-mm NMAS FTSR mixtures (20 µm and 60%) to mitigate near-surface reflective cracking.


2015 ◽  
Vol 54 (2) ◽  
pp. 98-106 ◽  
Author(s):  
F. Hutton ◽  
J.H. Spink ◽  
D. Griffin ◽  
S. Kildea ◽  
D. Bonner ◽  
...  

Abstract Virus diseases are of key importance in potato production and in particular for the production of disease-free potato seed. However, there is little known about the frequency and distribution of potato virus diseases in Ireland. Despite a large number of samples being tested each year, the data has never been collated either within or across years. Information from all known potato virus testing carried out in the years 2006–2012 by the Department of Agriculture Food and Marine was collated to give an indication of the distribution and incidence of potato virus in Ireland. It was found that there was significant variation between regions, varieties, years and seed classes. A definition of daily weather data suitable for aphid flight was developed, which accounted for a significant proportion of the variation in virus incidence between years. This use of weather data to predict virus risk could be developed to form the basis of an integrated pest management approach for aphid control in Irish potato crops.


Sign in / Sign up

Export Citation Format

Share Document