scholarly journals Environmental DNA analysis shows high potential as a tool for estimating intraspecific genetic diversity in a wild fish population

2020 ◽  
Vol 20 (5) ◽  
pp. 1248-1258 ◽  
Author(s):  
Satsuki Tsuji ◽  
Atsushi Maruyama ◽  
Masaki Miya ◽  
Masayuki Ushio ◽  
Hirotoshi Sato ◽  
...  
2019 ◽  
Author(s):  
Satsuki Tsuji ◽  
Atsushi Maruyama ◽  
Masaki Miya ◽  
Masayuki Ushio ◽  
Hirotoshi Sato ◽  
...  

AbstractEnvironmental DNA (eDNA) analysis has recently been used as a new tool for estimating intraspecific diversity. However, whether known haplotypes contained in a sample can be detected correctly using eDNA-based methods has been examined only by an aquarium experiment. Here, we tested whether the haplotypes of Ayu fish (Plecoglossus altivelis altivelis) detected in a capture survey could also be detected from an eDNA sample derived from the field that contained various haplotypes with low concentrations and foreign substances. A water sample and Ayu specimens collected from a river on the same day were analysed by eDNA analysis and Sanger sequencing, respectively. The 10 L water sample was divided into 20 filters for each of which 15 PCR replications were performed. After high-throughput sequencing, denoising was performed using two of the most widely used denoising packages, UNOISE3 and DADA2. Of the 42 haplotypes obtained from the Sanger sequencing of 96 specimens, 38 (UNOISE3) and 41 (DADA2) haplotypes were detected by eDNA analysis. When DADA2 was used, except for one haplotype, haplotypes owned by at least two specimens were detected from all the filter replications. This study showed that the eDNA analysis for evaluating intraspecific genetic diversity provides comparable results for large-scale capture-based conventional methods, suggesting that it could become a more efficient survey method for investigating intraspecific genetic diversity in the field.


Author(s):  
Jérôme G. Prunier ◽  
Mathieu Chevalier ◽  
Allan Raffard ◽  
Géraldine Loot ◽  
Nicolas Poulet ◽  
...  

AbstractTheory predicts that biodiversity is causally linked to key ecological functions such as biomass productivity, and that loss in functional traits both among- and within-species can reduce the efficiency of ecosystem functions. There has been ample empirical and experimental demonstration that species loss indeed reduces the efficiency of ecosystem functions, with tremendous impacts on services provided by biodiversity. Nonetheless, and despite the fact that within-species diversity is strongly altered by human activities, there have been little attempts to empirically test (i) whether intraspecific genetic diversity actually promotes productivity and stability in wild populations, and, (ii) if so, to quantify its relative importance compared to other determinants. Capitalizing on 20-year demographic surveys in wild fish populations, we show that genetic diversity does not increase mean biomass production in local populations, but strongly and consistently stabilizes biomass production over time. Genetic diversity accounts for about 20% of explained variance in biomass stability across species, an important contribution about half that of environment and demography (about 40% each). Populations having suffered from demographic bottlenecks in the recent past harbored lower levels of genetic diversity and showed less stability in biomass production over the last 20 years. Our study demonstrates that the loss of intraspecific genetic diversity can destabilize biomass productivity in natural vertebrate populations in just a few generations, strengthening the importance for human societies to adopt prominent environmental policies to favor all facets of biodiversity.


2018 ◽  
Author(s):  
Satsuki Tsuji ◽  
Masaki Miya ◽  
Masayuki Ushio ◽  
Hirotoshi Sato ◽  
Toshifumi Minamoto ◽  
...  

AbstractRecent advances in environmental DNA (eDNA) analysis using high-throughput sequencing (HTS) provide a non-invasive way to evaluate the intraspecific genetic diversity of aquatic macroorganisms. However, erroneous sequences present in HTS data can result in false positive haplotypes; therefore, reliable strategies are necessary to eliminate such erroneous sequences when evaluating intraspecific genetic diversity using eDNA metabarcoding. In this study, we propose an approach combining denoising using amplicon sequence variant (ASV) method and the removal of haplotypes with low detection rates. A mixture of rearing water of Ayu (Plecoglossus altivelis altivelis) was used as an eDNA sample. In total, nine haplotypes of Ayu mitochondrial D-loop region were contained in the sample and amplified by two-step tailed PCR. The 15 PCR replicates indexed different tags were prepared from the eDNA sample to compare the detection rates between true haplotypes and false positive haplotypes. All PCR replications were sequenced by HTS, and the total number of detected true haplotypes and false positive haplotypes were compared with and without denoising using the two types of ASV methods, Divisive Amplicon Denoising Algorithm 2 (DADA2) and UNOISE3. The use of both ASV methods considerably reduced the number of false positive haplotypes. Moreover, all true haplotypes were detected in all 15 PCR, whereas false positive haplotypes had detection rates varying from 1/15 to 15/15. Thus, by removing haplotypes with lower detection rates than 15/15, the number of false positive haplotypes were further reduced. The approach proposed in this study successfully eliminated most of false positive haplotypes in the HTS data obtained from eDNA samples, which allowed us to improve the detection accuracy for evaluating intraspecific genetic diversity using eDNA analysis.


2019 ◽  
Vol 2 (1) ◽  
pp. 42-52 ◽  
Author(s):  
Satsuki Tsuji ◽  
Masaki Miya ◽  
Masayuki Ushio ◽  
Hirotoshi Sato ◽  
Toshifumi Minamoto ◽  
...  

2009 ◽  
Vol 18 (6) ◽  
pp. 1112-1123 ◽  
Author(s):  
SIMON BLANCHET ◽  
OLIVIER REY ◽  
PAULINE BERTHIER ◽  
SOVAN LEK ◽  
GERALDINE LOOT

2002 ◽  
Vol 78 (4) ◽  
pp. 539-549 ◽  
Author(s):  
Paul D Anderson ◽  
John C Zasada ◽  
Glen W Erickson ◽  
Zigmond A Zasada

A white pine (Pinus strobus L.) stand at the western margin of the species range, approximately 125 years of age at present, was thinned in 1953 from 33.5 m2 ha-1 to target residual basal areas of 18.4, 23.0, 27.5, and 32.1 m2 ha-1 . Repeated measurement over the following 43-years indicated that the greatest total volume production and the greatest number of large diameter trees occurred in the unit of highest residual density. Over time, the distribution of stems was predominantly random although mortality between 1979 and 1996 resulted in a tendency for clumping in the 23.0 and 27.5 m2 ha-1 treatments. DNA analysis indicated that thinning intensity had little effect on the genetic diversity of residual white pine. This study suggests that mature white pine stands in northern Minnesota may be managed at relatively high densities without loss of productivity. However, regardless of overstory density, there was little or no white pine regeneration occurring in this stand. Key words: thinning, growth, genetic diversity, molecular markers, spatial pattern, regeneration


Sign in / Sign up

Export Citation Format

Share Document