Melt Pockets in Garnet Megacrysts from Cenozoic Alkali Basalts of The Savaryn‐Tsaram Vicinity, Mongolia

Author(s):  
Anna ASEEVA ◽  
Oleg AVCHENKO ◽  
Alexander KARABTSOV ◽  
Alexander CHASHCHIN ◽  
Sergey VYSOTSKIY ◽  
...  
Keyword(s):  
1977 ◽  
Vol 14 (3) ◽  
pp. 346-356 ◽  
Author(s):  
R. A. Jamieson

The Hare Bay Allochthon of northwestern Newfoundland consists of a series of sedimentary, volcanic, metamorphic, and ultramafic rocks which was emplaced over a Cambro-Ordovician continental margin as several thrust sheets. It probably represents a continental margin sequence overridden by oceanic crust and upper mantle. The Partridge Point gabbro, Cape Onion volcanics, and Ireland Point Volcanics, which now occur in the Maiden Point, Cape Onion, and St. Anthony tectonic slices respectively, appear to be closely related on petrographic and chemical grounds. Olivine, titanaugite, kaersutite, and plagioclase indicate that these rocks formed as a single suite of hydrous alkali basalts, possibly as part of a seamount near a continental margin. This relationship provides a link between the lower sedimentary and the upper igneous-metamorphic structural slices of the allochthon and implies that most of the transported rocks in the Hare Bay area evolved in close proximity to each other.


2012 ◽  
Vol 150 (3) ◽  
pp. 497-508 ◽  
Author(s):  
GEORGE S.-K. MA ◽  
JOHN MALPAS ◽  
JIAN-FENG GAO ◽  
KUO-LUNG WANG ◽  
LIANG QI ◽  
...  

AbstractEarly–Middle Miocene intraplate basalts from the Aleppo Plateau, NW Syria have been analysed for their platinum-group elements (PGEs). They contain extremely low PGE abundances, comparable with most alkali basalts, such as those from Hawaii, and mid-ocean ridge basalts. The low abundances, together with high Pd/Ir, Pt/Ir, Ni/Ir, Cu/Pd, Y/Pt and Cu/Zr are consistent with sulphide fractionation, which likely occurred during partial melting and melt extraction within the mantle. Some of the basalts are too depleted in PGEs to be explained solely by partial melting of a primitive mantle-like source. Such ultra-low PGE abundances, however, are possible if the source contains some mafic lithologies. Many of the basalts also exhibit suprachondritic Pd/Pt ratios of up to an order of magnitude higher than primitive mantle and chondrite, an increase too high to be attributable to fractionation of spinel and silicate minerals alone. The elevated Pd/Pt, associated with a decrease in Pt but not Ir and Ru, are also inconsistent with removal of Pt-bearing PGE minerals or alloys, which should have concurrently lowered Pt, Ir and Ru. In contrast, melting of a metasomatized source comprising sulphides whose Pt and to a lesser extent Rh were selectively mobilized through interaction with silicate melts, may provide an explanation.


2010 ◽  
Vol 58 ◽  
pp. 35-65
Author(s):  
Paul Martin Holm ◽  
L.E. Pedersen, ◽  
B Højsteen

More than 250 dykes cut the mid Proterozoic basement gneisses and granites of Bornholm. Most trend between NNW and NNE, whereas a few trend NE and NW. Field, geochemical and petrological evidence suggest that the dyke intrusions occurred as four distinct events at around 1326 Ma (Kelseaa dyke), 1220 Ma (narrow dykes), 950 Ma (Kaas and Listed dykes), and 300 Ma (NW-trending dykes), respectively. The largest dyke at Kelseaa (60 m wide) and some related dykes are primitive olivine tholeiites, one of which has N-type MORB geochemical features; all are crustally contaminated. The Kelseaa type magmas were derived at shallow depth from a fluid-enriched, relatively depleted, mantle source,but some have a component derived from mantle with residual garnet. They are suggested to have formed in a back-arc environment. The more than 200 narrow dykes are olivine tholeiites (some picritic), alkali basalts, trachybasalts, basanites and a few phonotephrites. The magmas evolved by olivine and olivine + clinopyroxene fractionation. They have trace element characteristics which can be described mainly by mixing of two components: one is a typical OIB-magma (La/Nb < 1, Zr/Nb = 4, Sr/Nd = 16) and rather shallowly derived from spinel peridotite; the other is enriched in Sr and has La/Nb = 1.0 - 1.5, Zr/Nb = 9, Sr/Nd = 30 and was derived at greater depth, probably from a pyroxenitic source. Both sources were probably recycled material in a mantle plume. A few of these dykes are much more enriched in incompatible elements and were derived from garnet peridotite by a small degree of partial melting. The Kaas and Listed dykes (20-40 m) and related dykes are evolved trachybasalts to basaltic trachyandesites. They are most likely related to the Blekinge Dalarne Dolerite Group. The few NW-trending dykes are quartz tholeiites, which were generated by large degrees of rather shallow melting of an enriched mantle source more enriched than the source of the older Bornholm dykes. The source of the NW-trending dykes was probably a very hot mantle plume.


1988 ◽  
Vol 69 (1-2) ◽  
pp. 17-35 ◽  
Author(s):  
J.M. Dautria ◽  
J. Dostal ◽  
C. Dupuy ◽  
J.M. Liotard

Sign in / Sign up

Export Citation Format

Share Document