melt pockets
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 21 (2) ◽  
pp. 3-18
Author(s):  
Lauro Cézar Montefalco de Lira Santos ◽  
Luís Gustavo Ferreira Viegas

We discuss meso- and microstructural features of granites closely related to strike-slip shear zones in the Borborema Province, NE Brazil. The Riacho do Icó stock is an en-cornue intrusion aged at ca. 607 Ma. Magmatic fabric is recorded in the core of the granite, whilst increasing deformation is marked by the development of mylonitic fabrics towards the Afogados da Ingazeira shear zone, including magmatic foliation and lineation rotation. Early recrystallization of quartz and K-feldspar crystals is widespread as a fabric with well-developed granoblastic polygonal textures and lobate subgrain boundaries, heterogeneously deformed lenses and ameboid quartz ribbons, typical of igneous rocks submitted to deformation in deep crustal levels. On the other hand, the Espinho Branco-Santa Luzia leucogranitic belt is hosted along the Patos Lineament, aged between the ca. 575 – 565 Ma interval. These rocks show discordant relationships with the host migmatites and the main deformational fabric is characterized by a dominant magmatic foliation that is locally overprinted by structures that are typical of solid-state flow. Quartz melt pockets and interstitial quartz grains filling fractures in feldspar clasts are common. Such characteristics are compatible with granites that were injected in the continental crust along planar anisotropies (i.e., shear zones) formed during the late-stage partial melting events that originated the migmatites of the area. The case studies are proxies in the understanding of different episodes of magma emplacement along shear zones in this part of West Gondwana.


Author(s):  
Anna ASEEVA ◽  
Oleg AVCHENKO ◽  
Alexander KARABTSOV ◽  
Alexander CHASHCHIN ◽  
Sergey VYSOTSKIY ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Beñat Oliveira ◽  
William L. Griffin ◽  
Sarah E. M. Gain ◽  
Martin Saunders ◽  
Jeremy Shaw ◽  
...  

AbstractAggregates of corundum crystals with skeletal to hopper morphology occur in pyroclastic rocks erupted from Cretaceous basaltic volcanoes on Mt Carmel, N. Israel. The rapid growth of the crystals trapped volumes of the parental Al2O3-supersaturated melt; phenocrysts of tistarite (Ti2O3) in the trapped melts indicate crystallization at oxygen fugacities 6–7 log units below the Iron-Wüstite buffer (fO2 = ΔIW − 6 to − 7), induced by fluxes of mantle-derived CH4-H2 fluids. Cathodoluminescence images reveal growth zoning within the individual crystals of the aggregates, related to the substitution of Ti3+ in the corundum structure. Ti contents are < 0.3 wt% initially, then increase first linearly, then exponentially, toward adjacent melt pockets to reach values > 2 wt%. Numerical modelling indicates that the first skeletal crystals grew in an open system, from a moving magma. The subsequent linear increase in Ti reflects growth in a partially closed system, with decreasing porosity; the exponential increase in Ti close to melt pockets reflects closed-system growth, leading to dramatic increases in incompatible-element concentrations in the residual melts. We suggest that the corundum aggregates grew in melt/fluid conduits; diffusion modelling implies timescales of days to years before crystallization was terminated by explosive eruption. These processes probably operate in explosive volcanic systems in several tectonic settings.


2020 ◽  
Vol 105 (11) ◽  
pp. 1704-1711
Author(s):  
Jörg Fritz ◽  
Ansgar Greshake ◽  
Mariana Klementova ◽  
Richard Wirth ◽  
Lukas Palatinus ◽  
...  

Abstract We report on the occurrence of a new high-pressure Ca-Al-silicate in localized shock melt pockets found in the feldspatic lunar meteorite Oued Awlitis 001 and discuss the implications of our discovery. The new mineral crystallized as tiny, micrometer-sized, acicular grains in shock melt pockets of roughly anorthitic bulk composition. Transmission electron microscopy based three-dimensional electron diffraction (3D ED) reveals that the CaAl4Si2O11 crystals are identical to the calcium aluminum silicate (CAS) phase first reported from static pressure experiments. The new mineral has a hexagonal structure, with a space group of P63/mmc and lattice parameters of a = 5.42(1) Å; c = 12.70(3) Å; V = 323(4) Å3; Z = 2. This is the first time 3D ED was applied to structure determination of an extraterrestrial mineral. The International Mineralogical Association (IMA) has approved this naturally formed CAS phase as the new mineral “donwilhelmsite” [CaAl4Si2O11], honoring the U.S. lunar geologist Don E. Wilhelms. On the Moon, donwilhelmsite can form from the primordial feldspathic crust during impact cratering events. In the feldspatic lunar meteorite Oued Awlitis 001, needles of donwilhelmsite crystallized in ~200 mm sized shock melt pockets of anorthositic-like chemical composition. These melt pockets quenched within milliseconds during declining shock pressures. Shock melt pockets in meteorites serve as natural crucibles mimicking the conditions expected in the Earth's mantle. Donwilhelmsite forms in the Earth's mantle during deep recycling of aluminous crustal materials, and is a key host for Al and Ca of subducted sediments in most of the transition zone and the uppermost lower mantle (460–700 km). Donwilhelmsite bridges the gap between kyanite and the Ca-component of clinopyroxene at low pressures and the Al-rich Ca-ferrite phase and Ca-perovskite at high-pressures. In ascending buoyant mantle plumes, at about 460 km depth, donwilhelmsite is expected to break down into minerals such as garnet, kyanite, and clinopyroxene. This process may trigger minor partial melting, releasing a range of incompatible minor and trace elements and contributing to the enriched mantle (EM1 and EM2) components associated with subducted sedimentary lithologies.


2020 ◽  
Vol 105 (11) ◽  
pp. 1609-1621 ◽  
Author(s):  
William L. Griffin ◽  
Sarah E.M. Gain ◽  
Martin Saunders ◽  
Luca Bindi ◽  
Olivier Alard ◽  
...  

Abstract Titanium diboride (TiB2) is a minor but common phase in melt pockets trapped in the corundum aggregates that occur as xenoliths in Cretaceous basaltic volcanoes on Mt. Carmel, north Israel. These melt pockets show extensive textural evidence of immiscibility between metallic (Fe-Ti-C-Si) melts, Ca-Al-Mg-Si-O melts, and Ti-(oxy)nitride melts. The metallic melts commonly form spherules in the coexisting oxide glass. Most of the observed TiB2 crystallized from the Fe-Ti-C silicide melts and a smaller proportion from the oxide melts. The parageneses in the melt pockets of the xenoliths require fO2 ≤ ΔIW-6, probably generated through interaction between evolved silicate melts and mantle-derived CH4+H2 fluids near the crust-mantle boundary. Under these highly reducing conditions boron, like carbon and nitrogen, behaved mainly as a siderophile element during the separation of immiscible metallic and oxide melts. These parageneses have implications for the residence of boron in the peridotitic mantle and for the occurrence of TiB2 in other less well-constrained environments such as ophiolitic chromitites.


2020 ◽  
Vol 48 (1) ◽  
pp. 233-258
Author(s):  
Meenakshi Wadhwa ◽  
Timothy J. McCoy ◽  
Devin L. Schrader

At present, meteorites collected in Antarctica dominate the total number of the world's known meteorites. We focus here on the scientific advances in cosmochemistry and planetary science that have been enabled by access to, and investigations of, these Antarctic meteorites. A meteorite recovered during one of the earliest field seasons of systematic searches, Elephant Moraine (EET) A79001, was identified as having originated on Mars based on the composition of gases released from shock melt pockets in this rock. Subsequently, the first lunar meteorite, Allan Hills (ALH) 81005, was also recovered from the Antarctic. Since then, many more meteorites belonging to these two classes of planetary meteorites, as well as other previously rare or unknown classes of meteorites (particularly primitive chondrites and achondrites), have been recovered from Antarctica. Studies of these samples are providing unique insights into the origin and evolution of the Solar System and planetary bodies. ▪  Antarctic meteorites dominate the inventory of the world's known meteorites and provide access to new types of planetary and asteroidal materials. ▪  The first meteorites recognized to be of lunar and martian origin were collected from Antarctica and provided unique constraints on the evolution of the Moon and Mars. ▪  Previously rare or unknown classes of meteorites have been recovered from Antarctica and provide new insights into the origin and evolution of the Solar System.


Geochemistry ◽  
2019 ◽  
Vol 79 (4) ◽  
pp. 125541 ◽  
Author(s):  
Run-Lian Pang ◽  
Dennis Harries ◽  
Kilian Pollok ◽  
Ai-Cheng Zhang ◽  
Falko Langenhorst

Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 616 ◽  
Author(s):  
Konstantin Litasov ◽  
Svetlana Teplyakova ◽  
Anton Shatskiy ◽  
Konstantin Kuper

Here we report new data on high-pressure microstructures in Elga group IIE iron meteorites, made of solidified Fe-Ni-P-S melt pockets and microcrystalline aggregates, which could be formed only at high pressures and temperatures according to the experimental data. The bulk composition of the melt pockets and crystals correspond to the Fe3P-Fe3S solid solution with the closure of an immiscibility gap at pressures near 20 GPa in static experiments. Some other melt pockets fit with the Fe2S-Fe2P compositions, which could also correspond to high pressures and temperatures. The results suggest a late shock episode during the formation of the IIE iron parent body, which may be prior or due to the final disruption that caused the meteorite arrival to Earth. It also has an important implication to the shock features in other meteorites, such as ureilite.


Sign in / Sign up

Export Citation Format

Share Document