Decline in lizard species diversity, abundance and ectoparasite load across an elevational gradient in the Australian alps

2020 ◽  
Author(s):  
Katelyn Hamilton ◽  
Celine T. Goulet ◽  
Emily M. Drummond ◽  
Anna F. Senior ◽  
Mellesa Schroder ◽  
...  
Zootaxa ◽  
2018 ◽  
Vol 4370 (4) ◽  
pp. 345 ◽  
Author(s):  
BENJAMIN R. KARIN ◽  
ELYSE S. FREITAS ◽  
SAMUEL SHONLEBEN ◽  
L. LEE GRISMER ◽  
AARON M. BAUER ◽  
...  

We collected two specimens of an undescribed species of Lygosoma from pitfall traps in an urban rainforest in Kuching and from the base of a forested hill in western Sarawak, East Malaysia. The new species is diagnosable from all south-east Asian congeners by morphological characters, and most closely resembles Lygosoma herberti from the Thai-Malay Peninsula. The new species shows substantial molecular divergence from its closest relatives in two protein-coding genes, one mitochondrial (ND1) and one nuclear (R35) that we sequenced for several south-east Asian congeners. We describe the new species on the basis of this distinct morphology and genetic divergence. It is the third species of Lygosoma known from Borneo, and highlights the continuing rise in lizard species diversity on the island. In addition, the discovery of this species from a small urban rainforest underscores the importance of preserving intact rainforest areas of any size in maintaining species diversity. 


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Imam Widhiono ◽  
Eming Sudiana ◽  
Darsono Darsono

Increases in mean temperature affect the diversity and abundance of wild bees in agricultural ecosystems. Pollinator community composition is expected to change along an elevational gradient due to differences in the daily ambient temperature. This study investigated the diversity and abundance of wild bees in an agricultural area along an elevational gradient in Central Java, Indonesia. Wild bees were collected using a sweep net in 40 green bean (Phaseolus vulgaris) cultivation sampling locations at seven different elevations (8, 108, 224, 424, 644, 893, and 1017 m above sea level). Species diversity was determined using the Shannon–Wiener diversity index. We identified 932 individuals from 8 species of wild bee belonging to 3 families. The family Apidae was predominant, with 6 species, while only 1 species was found from each of Megachilidae and Halictidae. Across the study sites, diversity increased with increasing elevation (H′= 1.4,D= 0.25, andE= 0.78 at low elevation toH′= 2.04,D= 0.13, andE= 0.96 at high elevation), and higher numbers of species were found at middle and high elevations. Species richness and abundance increased linearly with increasing elevation, and species diversity was highest at middle elevations.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7858 ◽  
Author(s):  
Miguel Camacho-Sanchez ◽  
Melissa T.R. Hawkins ◽  
Fred Tuh Yit Yu ◽  
Jesus E. Maldonado ◽  
Jennifer A. Leonard

Mountains offer replicated units with large biotic and abiotic gradients in a reduced spatial scale. This transforms them into well-suited scenarios to evaluate biogeographic theories. Mountain biogeography is a hot topic of research and many theories have been proposed to describe the changes in biodiversity with elevation. Geometric constraints, which predict the highest diversity to occur in mid-elevations, have been a focal part of this discussion. Despite this, there is no general theory to explain these patterns, probably because of the interaction among different predictors with the local effects of historical factors. We characterize the diversity of small non-volant mammals across the elevational gradient on Mount (Mt.) Kinabalu (4,095 m) and Mt. Tambuyukon (2,579 m), two neighboring mountains in Borneo, Malaysia. We documented a decrease in species richness with elevation which deviates from expectations of the geometric constraints and suggests that spatial factors (e.g., larger diversity in larger areas) are important. The lowland small mammal community was replaced in higher elevations (from above ~1,900 m) with montane communities consisting mainly of high elevation Borneo endemics. The positive correlation we find between elevation and endemism is concordant with a hypothesis that predicts higher endemism with topographical isolation. This supports lineage history and geographic history could be important drivers of species diversity in this region.


2018 ◽  
Vol 39 (2) ◽  
pp. 191-202 ◽  
Author(s):  
Víctor Argaez ◽  
Israel Solano-Zavaleta ◽  
J. Jaime Zúñiga-Vega

Abstract Tail autotomy is a common phenomenon in lizards that increases the chances of immediate survival during a predation event or agonistic encounter. However, despite short-term benefits, tail regeneration may also impose costs. Several studies have demonstrated that tail loss compromises other vital functions such as lipid storage, reproduction, and the immune system. Several lizard species are hosts of mites and ticks. Here we evaluated in three lizard species from the genus Sceloporus, whether individuals that have lost their tails and invested energy in tail regeneration are more susceptible to ectoparasites. Using a multimodel inference framework, we examined if tail loss and regeneration, as well as sex, body condition, and season (dry or rainy) predict ectoparasite load. Our results indicate that investing energy and resources in tail regeneration compromises defence against ectoparasites. These costs differed between sexes and among species. Overall, ectoparasite load increases during the rainy season and is on average higher in males. In S. grammicus, during the rainy season, males with regenerated tails and in poor body condition had more ectoparasites than males with intact tails in good body condition. In S. megalepidurus, we observed the same effect during the rainy season but in females rather than males. In S. torquatus, we found no effect of tail loss on ectoparasite load. We discuss the possibility that differences observed among species reflect differences in both species-specific physiological trade-offs and local environmental conditions.


2017 ◽  
Vol 68 ◽  
pp. 170-176 ◽  
Author(s):  
P. Mason DuBois ◽  
Tanner K. Shea ◽  
Natalie M. Claunch ◽  
Emily N. Taylor

2019 ◽  
Vol 97 (11) ◽  
pp. 1004-1012 ◽  
Author(s):  
N. Johnson ◽  
A.H. Lymburner ◽  
G. Blouin-Demers

Parasites are ubiquitous and can have large impacts on the fitness of their hosts. The effects of ectoparasites on physiology, behaviour, and immune function suggest that they could be part of the factors which impact thermoregulation. We tested the hypothesis that ectoparasites impact thermoregulation in Yarrow’s Spiny Lizards (Sceloporus jarrovii Cope in Yarrow, 1875) living along an elevational gradient. We predicted a positive association between ectoparasite load and body temperature (Tb), and a negative association between ectoparasite load and effectiveness of thermoregulation (de – db index). We also predicted that the impacts of ectoparasites would be greatest at high elevation where thermal quality of the environment is low because the costs of thermoregulation increase with elevation and these costs can impact thermal immune responses. We found a significant association between the number of chiggers (Trombiculoidea) harboured by lizards and Tb that depended on elevation, but no association between ectoparasite load and de – db index. The mean chigger infection rate was associated with a ΔTb of +0.18 °C at low elevation (consistent with fever) and of –1.07 °C at high elevation (consistent with hypothermia). These findings suggest that parasitism by chiggers impacts lizard Tb in a way that depends on environmental thermal quality.


Sign in / Sign up

Export Citation Format

Share Document