scholarly journals Lung ultrasound compared with chest X-ray in diagnosing postoperative pulmonary complications following cardiothoracic surgery: a prospective observational study

Anaesthesia ◽  
2018 ◽  
Vol 73 (8) ◽  
pp. 946-954 ◽  
Author(s):  
H. R. Touw ◽  
K. L. Parlevliet ◽  
M. Beerepoot ◽  
P. Schober ◽  
A. Vonk ◽  
...  
2020 ◽  
Author(s):  
Thomas Galetin ◽  
Mark Schieren ◽  
Benjamin Marks ◽  
Jerome Defosse ◽  
Erich Stoelben

Summary Background Chest X‑ray (CXR) after thoracic surgery contributes to patient discomfort and costs and is of limited therapeutic value. Lung ultrasound (LU) for pneumothorax may be an alternative to CXR, but diagnostic accuracy data are heterogeneous and biased by insufficient sonographic technique and patient selection. Reported sensitivities range from 0.21 to 1.0. We evaluated the sensitivity of LU on the first day after thoracic surgery under routine conditions. Methods We performed a prospective observational study (trial-ID DRKS00014557). Consecutive patients undergoing lung resection received standardized LU in addition to routine CXR on the first postoperative day. Ultrasound examiner and radiologist were blinded to corresponding X‑ray and ultrasound findings. CXR was used as reference to determine diagnostic test performance of ultrasound. The conformity of sonography- and routine-based therapeutic decisions was evaluated. Results A total of 68 patients were examined. The mean duration of ultrasound was 145 ± 64 s. CXR identified 23 patients with pneumothorax with a mean apex-to-cupola size of 1.5 ± 1.0 cm. Ultrasound detected 18 patients with pneumothorax. The computed sensitivity of LU was 0.48 (95% confidence interval [0.36; 0.60]). Specificity was between 0.81 and 1.0, the negative predictive value 0.76 [0.66; 0.86]. The sensitivity of CXR was 0.56 [0.44; 0.68]. Air leakage via chest tube correlated weakly with CXR (spearman’s rho = 0.26) and moderately with LU (rho = 0.43). The conformity between sonographically based recommendations and the actual therapy based on routine diagnostics was 96%. Conclusions Sensitivity of ultrasound for pneumothorax detection nearly reached CXR and resulted in equally safe patient management. Our data can serve as a pilot study for upcoming larger-scaled controlled trials.


2021 ◽  
Vol 8 (9) ◽  
pp. 1566
Author(s):  
Ashish Saklani ◽  
Ashwani Tomar ◽  
Sumala Kapila ◽  
Shyam Lal Kaushik ◽  
Anjali Mahajan

Background: Pneumonia is a major cause of morbidity and mortality in children under five years of age. Chest x-ray poses radiation hazard to children and thus an alternative safe imaging modality must be explored for pediatric pneumonias.Methods: This prospective observational study included all children below 18 years of age. Majority of patients were below five years of age. All clinically suspicious patients were subjected to chest x-ray and lung ultrasound (LUS). Chest x-ray was considered as imaging diagnostic standard for pneumonia. Consolidation and dynamic air bronchogram were looked on LUS.Results: A total of 55 patients were included in study with 26 (47.2%) as infants and up to 47 (85.3%) as under five children. Out of 55 cases 32 cases (58.20%) were diagnosed as lobar pneumonia while 23 (41.8%) as bronchopneumonia on chest x-ray. LUS demonstrated high sensitivity and specificity of 90.63% and 100% for lobar pneumonia and 86.96 and 90.63% for bronchopneumonia respectively. Dynamic air bronchogram sign was found in all cases of lobar pneumonia on LUS and with sensitivity of 73.91% in bronchopneumonia.Conclusions: LUS proved itself as highly sensitive and specific modality for detecting consolidation and owing to safe non ionizing nature of ultrasound, it must be considered as an alternative to chest x-ray as an imaging diagnostic tool for pediatric pneumonia.


2020 ◽  
pp. 102490792096932
Author(s):  
Ruiting Li ◽  
Hong Liu ◽  
Hong Qi ◽  
Yin Yuan ◽  
Xiaojing Zou ◽  
...  

Background: An outbreak of coronavirus disease 2019 (COVID-19) took place in Wuhan, China, by the end of 2019, and the disease continues to spread all over the world. The number of patients is increasing rapidly, a large number of infected patients is critically ill, and the mortality is high. However, information on COVID-19 patients is limited, and its clinical characteristics have not been fully studied. Objectives: To compare the performances of point-of-care lung ultrasound (LUS) and bedside chest X-ray in assessing the condition of COVID-19 patients with acute respiratory distress syndrome (ARDS). Methods: This observational study enrolled 42 COVID-19 patients with ARDS who were admitted to the Department of Critical Care Medicine of the Wuhan Union Hospital from February to April 2020. The point-of-care LUS characteristics of the COVID-19 patients with ARDS were summarized, and the performances of LUS and bedside chest X-ray in assessing the patient’s condition were compared. Results: Most of the 42 patients were elderly individuals with chronic clinical diseases. The proportion of patients older than 60 years old was 85.7%. All patients were given invasive mechanical ventilation; eight (19.0%) of them received venovenous extracorporeal membrane oxygenation support. LUS has evident advantages in detecting lung consolidation, patchy shadows, and pleural thickening, and pleural line changes in particular. The receiver operating characteristic analysis indicated that the sensitivity, Youden index, and kappa value for detecting COVID-19 patients with ARDS were higher for LUS than the chest X-ray. Conclusion: LUS has better diagnostic accuracy and sensitivity in COVID-19 patients with ARDS than the chest X-ray.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Marcell Szabó ◽  
Anna Bozó ◽  
Katalin Darvas ◽  
Sándor Soós ◽  
Márta Őzse ◽  
...  

Abstract Background Postoperative pulmonary complications (PPCs) are important contributors to mortality and morbidity after surgery. The available predicting models are useful in preoperative risk assessment, but there is a need for validated tools for the early postoperative period as well. Lung ultrasound is becoming popular in intensive and perioperative care and there is a growing interest to evaluate its role in the detection of postoperative pulmonary pathologies. Objectives We aimed to identify characteristics with the potential of recognizing patients at risk by comparing the lung ultrasound scores (LUS) of patients with/without PPC in a 24-h postoperative timeframe. Methods Observational study at a university clinic. We recruited ASA 2–3 patients undergoing elective major abdominal surgery under general anaesthesia. LUS was assessed preoperatively, and also 1 and 24 h after surgery. Baseline and operative characteristics were also collected. A one-week follow up identified PPC+ and PPC- patients. Significantly differing LUS values underwent ROC analysis. A multi-variate logistic regression analysis with forward stepwise model building was performed to find independent predictors of PPCs. Results Out of the 77 recruited patients, 67 were included in the study. We evaluated 18 patients in the PPC+ and 49 in the PPC- group. Mean ages were 68.4 ± 10.2 and 66.4 ± 9.6 years, respectively (p = 0.4829). Patients conforming to ASA 3 class were significantly more represented in the PPC+ group (66.7 and 26.5%; p = 0.0026). LUS at baseline and in the postoperative hour were similar in both populations. The median LUS at 0 h was 1.5 (IQR 1–2) and 1 (IQR 0–2; p = 0.4625) in the PPC+ and PPC- groups, respectively. In the first postoperative hour, both groups had a marked increase, resulting in scores of 6.5 (IQR 3–9) and 5 (IQR 3–7; p = 0.1925). However, in the 24th hour, median LUS were significantly higher in the PPC+ group (6; IQR 6–10 vs 3; IQR 2–4; p < 0.0001) and it was an independent risk factor (OR = 2.6448 CI95% 1.5555–4.4971; p = 0.0003). ROC analysis identified the optimal cut-off at 5 points with high sensitivity (0.9444) and good specificity (0.7755). Conclusion Postoperative LUS at 24 h can identify patients at risk of or in an early phase of PPCs.


2020 ◽  
Vol 18 (1) ◽  
pp. 47-51
Author(s):  
Smriti Mahaju Bajracharya ◽  
Pragati Shrestha ◽  
Apurb Sharma

Background: The purpose of this study was to compare diagnostic performance of lung ultrasound in comparison to chest X-ray to detect pulmonary complication after cardiac surgery in children.Methods: A prospective observational study was conducted in tertiary center of Nepal. 141 consecutive paediatric patients aged less than 14 years scheduled for cardiac surgery were enrolled during the 6 months period. Ultrasound was done on the first post-operative day of cardiac surgery and compared to chest X-ray done on the same day to detect pleural effusion, consolidation, atelectasis and pneumothorax.Results: Sensitivity, specificity, positive and negative predictive values and diagnostic accuracy were calculated using standard formulas. lung ultrasonography had overall sensitivity of 60 %, specificity of 72.4%, positive predictive value of 31.9% and negative predictive value of 89.3% and diagnostic accuracy of 70.2% for diagnosing consolidation. Similarly, lung ultrasonography had overall sensitivity of 90%, specificity of 82.6%, positive predictive value of 46.1% and negative predictive value of 98% and diagnostic accuracy of 83.6 % for diagnosing pleural effusion. For atelectasis, ultrasonography had sensitivity of 50%, specificity of 76.9%, positive predictive value of 30.7% and negative predictive value of 88.2% and diagnostic accuracy of 72.3%. No pneumothoraxes were detected during our study period. Conclusions: Lung ultrasound is an alternative non-invasive technique which is able to diagnose pulmonary complications after cardiac surgery with acceptable diagnostic accuracy with no proven complications but with decreasing exposure to ionizing radiation and possibly cost.Keywords: Cardiac surgery; children; lung ultrasound; pulmonary complications


Author(s):  
Hiroshi Koyama ◽  
Wirongrong Chierakul ◽  
Prakaykaew Charunwatthana ◽  
Natpatou Sanguanwongse ◽  
Benjaluck Phonrat ◽  
...  

Lung ultrasound (LUS) is performed for several conditions and is a more sensitive method of detecting pathological pulmonary changes than chest X-ray. Therefore, LUS for individuals with dengue could be an important tool for the early detection of pleural effusions and pulmonary edema signifying capillary plasma leakage, which is the hallmark of severe dengue pathophysiology. We conducted a prospective observational study of pulmonary changes identifiable with LUS in dengue patients admitted to the Hospital for Tropical Diseases in Mahidol University, Bangkok, and the Bamrasnaradura Infectious Diseases Institute, Nonthaburi, Thailand. The LUS findings were described according to standard criteria, including the presence of A, B1, B2, and C patterns in eight chest regions and the presence of pleural effusions. From November 2017 to April 2018, 50 patients with dengue were included in the study. LUS was performed during the Shonna febrile phase for nine patients (18%) and during the critical-convalescence phase for 41 patients (82%). A total of 33 patients (66%) had at least one abnormality discovered using LUS. Abnormal LUS findings were observed more frequently during the critical-convalescence phase (N = 30/41; 73%) than during the febrile phase (N = 3/9; 33%) (P = 0.047). Abnormal aeration patterns were observed in 31 patients (62%). Only B patterns with only multiple B lines were observed in 21 patients (42%); of these patients, three had already exhibited these during the febrile phase (N = 3). C patterns (N = 10; 24%), pleural effusion (N = 10; 24%), and subpleural abnormalities (N = 11; 27%) were observed only during the critical-convalescence phase. LUS can detect signs of capillary leakage, including interstitial edema and pleural effusions, early during the course of dengue.


Sign in / Sign up

Export Citation Format

Share Document