Testis‐specific calcium‐binding protein CBP86‐IV (CABYR) binds with phosphoglycerate kinase 2 in vitro and in vivo experiment

Andrologia ◽  
2019 ◽  
Vol 51 (7) ◽  
Author(s):  
Shulin Shen ◽  
Dongrun Li ◽  
Jihong Liang ◽  
Jinzi Wang
2021 ◽  
Author(s):  
Xiaoying You ◽  
Min Li ◽  
Hongwei Cai ◽  
Wenwen Zhang ◽  
Ye Hong ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignant tumors of the digestive system, which has been the second cause of cancer-related deaths worldwide. The distant metastasis is one of the main reasons for the high recurrence and mortality rate of GC patients. Hence, it is necessary to investigate the molecular mechanism underlying gastric carcinogenesis and progression, especially the key genes and signaling pathways that promote GC cells proliferation, invasion, and metastasis. Methods: Using bioinformatics and clinicopathological analysis, in vivo tumor formation assays, mass spectrometry and so on, we characterized the role and molecular mechanism of S100 Calcium Binding Protein A16 (S100A16) in promoting GC tumor growth, migration, invasion and epithelial-to-mesenchymal transition (EMT), and investigated how Zonula Occludens-2 (ZO-2) inhibition mediates S100A16-induced metastasis and progression in GC.Results: We analyzed S100A16 expression with the GEPIA database and the UALCAN cancer database, and the prognostic analysis was performed using 100 clinical GC samples. We found that S100A16 is significantly upregulated in GC tissues and closely correlated with poor prognosis in GC patients. Functional studies reveal that S100A16 overexpression triggers GC cells proliferation and migration both in vivo and in vitro; by contrast, S100A16 knockdown restricts the speed of GC cells growth and mobility. Proteomic analysis results reveal a large S100A16 interactome, which includes ZO-2, a master regulator of cell-to-cell tight junctions. Mechanistic assay results indicate that excessive S100A16 instigates GC cell invasion, migration and EMT via ZO-2 inhibition, which arose from S100A16-mediated ZO-2 ubiquitination and degradation. Conclusions: Our results not only reveal that S100A16 is a promising candidate biomarker in GC early diagnosis and prediction of metastasis, but also establish the therapeutic importance of targeting S100A16 in order to prevent ZO-2 loss and suppress GC metastasis and progression.


Author(s):  
Xiaoying You ◽  
Min Li ◽  
Hongwei Cai ◽  
Wenwen Zhang ◽  
Ye Hong ◽  
...  

Gastric cancer (GC) is one of the most common malignant tumors of the digestive system, listed as the second cause of cancer-related deaths worldwide. S100 Calcium Binding Protein A16 (S100A16) is an acidic calcium-binding protein associated with several types of tumor progression. However, the function of S100A16 in GC is still not very clear. In this study, we analyzed S100A16 expression with the GEPIA database and the UALCAN cancer database. Meanwhile, 100 clinical GC samples were used for the evaluation of its role in the prognostic analysis. We found that S100A16 is significantly upregulated in GC tissues and closely correlated with poor prognosis in GC patients. Functional studies reveal that S100A16 overexpression triggers GC cell proliferation and migration both in vivo and in vitro; by contrast, S100A16 knockdown restricts the speed of GC cell growth and mobility. Proteomic analysis results reveal a large S100A16 interactome, which includes ZO-2 (Zonula Occludens-2), a master regulator of cell-to-cell tight junctions. Mechanistic assay results indicate that excessive S100A16 instigates GC cell invasion, migration, and epithelial-mesenchymal transition (EMT) via ZO-2 inhibition, which arose from S100A16-mediated ZO-2 ubiquitination and degradation. Our results not only reveal that S100A16 is a promising candidate biomarker in GC early diagnosis and prediction of metastasis, but also establish the therapeutic importance of targeting S100A16 to prevent ZO-2 loss and suppress GC metastasis and progression.


1995 ◽  
Vol 129 (5) ◽  
pp. 1355-1362 ◽  
Author(s):  
K K Briggs ◽  
A J Silvers ◽  
K M Johansen ◽  
J Johansen

The mAb lan3-6 recognizes a cytosolic antigen which is selectively expressed in the growth cones and axons of a small subset of peripheral sensory neurons fasciculating in a single tract common to all hirudinid leeches. We have used this antibody to clone a novel EF-hand calcium-binding protein, calsensin, by screening an expression vector library. A full-length clone of 1.1 kb identified by the antibody was isolated and sequenced. In situ hybridizations with calsensin probes and antibody staining using new polyclonal antisera generated against calsensin sequence demonstrate that calsensin indeed corresponds to the lan3-6 antigen. Calsensin consists of 83 residues with a calculated molecular mass of 9.1 kD that contains two helix-loop-helix domains. The calcium-binding domains are likely to be functional in vivo since a fusion protein derived from the calsensin clone binds 45Ca2+ in vitro. Immunoaffinity purification experiments with the lan3-6 antibody shows that a large 200,000 M(r) protein selectively copurifies with calsensin in two different leech species. These results suggest that calsensin may be functioning as a trigger protein which interacts with the larger protein. These data are consistent with the hypothesis that calsensin may mediate calcium-dependent signal transduction events in the growth cones and axons of this small group of sensory neurons which fasciculate in a single axon tract.


2015 ◽  
Vol 106 (10) ◽  
pp. 1288-1295 ◽  
Author(s):  
Jingmei Liu ◽  
Ping Han ◽  
Mengke Li ◽  
Wei Yan ◽  
Jiqiao Liu ◽  
...  

Blood ◽  
2021 ◽  
Vol 137 (12) ◽  
pp. 1641-1651
Author(s):  
Fredy Delgado Lagos ◽  
Amro Elgheznawy ◽  
Anastasia Kyselova ◽  
Dagmar Meyer zu Heringdorf ◽  
Corina Ratiu ◽  
...  

Abstract Secreted modular calcium-binding protein 1 (SMOC1) is an osteonectin/SPARC-related matricellular protein, whose expression is regulated by microRNA-223 (miR-223). Given that platelets are rich in miR-223, this study investigated the expression of SMOC1 and its contribution to platelet function. Human and murine platelets expressed SMOC1, whereas platelets from SMOC1+/− mice did not present detectable mature SMOC1 protein. Platelets from SMOC1+/− mice demonstrated attenuated responsiveness to thrombin (platelet neutrophil aggregate formation, aggregation, clot formation, Ca2+ increase, and β3 integrin phosphorylation), whereas responses to other platelet agonists were unaffected. SMOC1 has been implicated in transforming growth factor-β signaling, but no link to this pathway was detected in platelets. Rather, the SMOC1 Kazal domain directly bound thrombin to potentiate its activity in vitro, as well as its actions on isolated platelets. The latter effects were prevented by monoclonal antibodies against SMOC1. Platelets from miR-223–deficient mice expressed high levels of SMOC1 and exhibited hyperreactivity to thrombin that was also reversed by preincubation with monoclonal antibodies against SMOC1. Similarly, SMOC1 levels were markedly upregulated in platelets from individuals with type 2 diabetes, and the SMOC1 antibody abrogated platelet hyperresponsiveness to thrombin. Taken together, we have identified SMOC1 as a novel thrombin-activating protein that makes a significant contribution to the pathophysiological changes in platelet function associated with type 2 diabetes. Thus, strategies that target SMOC1 or its interaction with thrombin may be attractive therapeutic approaches to normalize platelet function in diabetes.


1979 ◽  
Vol 236 (5) ◽  
pp. E556 ◽  
Author(s):  
J J Feher ◽  
R H Wasserman

The concentration of the vitamin D-induced calcium-binding protein (CaBP) and calcium absorption from the duodenum were investigated in chicks with an in vivo ligated-loop technique. The relation between CaBP and calcium absorption was dependent on a) source of vitamin D activity (either vitamin D3 or 1,25-dihydroxycholecalciferol); b) dosage of vitamin D3; c) time after administration of vitamin D3 to rachitic animals. To aid in the interpretation of these results, a phenomenological model was developed in which CaBP was viewed as being linearly related to a portion of calcium absorption. The model, when applied to the data, suggests that there is a "nonfunctional" pool of CaBP the size of which is determined by the vitamin D status of the animal. After correction for this nonfunctional pool, the proportionality between CaBP and calcium absorption is independent of the vitamin D status of the animal.


2006 ◽  
Vol 26 (24) ◽  
pp. 9315-9326 ◽  
Author(s):  
Eric J. Jaehnig ◽  
Analeah B. Heidt ◽  
Stephanie B. Greene ◽  
Ivo Cornelissen ◽  
Brian L. Black

ABSTRACT The sarcoplasmic reticulum (SR) plays a critical role in excitation-contraction coupling by regulating the cytoplasmic calcium concentration of striated muscle. The histidine-rich calcium-binding protein (HRCBP) is expressed in the junctional SR, the site of calcium release from the SR. HRCBP is expressed exclusively in muscle tissues and binds calcium with low affinity and high capacity. In addition, HRCBP interacts with triadin, a protein associated with the ryanodine receptor and thought to be involved in calcium release. Its calcium binding properties, localization to the SR, and interaction with triadin suggest that HRCBP is involved in calcium handling by the SR. To determine the function of HRCBP in vivo, we inactivated HRC, the gene encoding HRCBP, in mice. HRC knockout mice exhibited impaired weight gain beginning at 11 months of age, which was marked by reduced skeletal muscle and fat mass, and triadin protein expression was upregulated in the heart of HRC knockout mice. In addition, HRC null mice displayed a significantly exaggerated response to the induction of cardiac hypertrophy by isoproterenol compared to their wild-type littermates. The exaggerated response of HRC knockout mice to the induction of cardiac hypertrophy is consistent with a regulatory role for HRCBP in calcium handling in vivo and suggests that mutations in HRC, in combination with other genetic or environmental factors, might contribute to pathological hypertrophy and heart failure.


2014 ◽  
Vol 73 (12) ◽  
pp. 1166-1182 ◽  
Author(s):  
Eva Borger ◽  
Abigail Herrmann ◽  
David A. Mann ◽  
Tara Spires-Jones ◽  
Frank Gunn-Moore

FEBS Letters ◽  
1992 ◽  
Vol 297 (1-2) ◽  
pp. 127-131 ◽  
Author(s):  
Peter D. Reisner ◽  
Sylvia Christakos ◽  
Thomas C. Vanaman

Sign in / Sign up

Export Citation Format

Share Document