Flow-Field Simulations and Hemolysis Estimates for the Food and Drug Administration Critical Path Initiative Centrifugal Blood Pump

2017 ◽  
Vol 41 (10) ◽  
pp. E129-E140 ◽  
Author(s):  
Margaret L. Heck ◽  
Allen Yen ◽  
Trevor A. Snyder ◽  
Edgar A. O'Rear ◽  
Dimitrios V. Papavassiliou
2014 ◽  
Vol 624 ◽  
pp. 223-227
Author(s):  
Hua Chun Wu ◽  
Zheng Yuan Zhang ◽  
Pu Chen ◽  
Yong Wu Ren

To reduce the energy consumption and blood damage of a centrifugal blood pump, this paper uses a permanent magnet bearing and blood flow pressure bearing to support blood pump impeller, design a magnetic fluid suspension centrifugal blood pump, three-dimensional numerical simulation of a magnetic fluid suspension centrifugal blood pump internal flow field, achieve the pressure of the blood pump flow channel and the velocity distribution, get the relationship between blood pressure and flow rate of the pump. The results can provide a theoretical basis for centrifugal blood pump design and improvement.


2004 ◽  
Vol 127 (2) ◽  
pp. 254-263 ◽  
Author(s):  
Steven W. Day ◽  
James C. McDaniel

Measurements of the time-varying flow in a centrifugal blood pump operating as a left ventricular assist device (LVAD) are presented. This includes changes in both the pump flow rate as a function of the left ventricle contraction and the interaction of the rotating impeller and fixed exit volute. When operating with a pulsing ventricle, the flow rate through the LVAD varies from 0-11L∕min during each cycle of the heartbeat. Phase-averaged measurements of mean velocity and some turbulence statistics within several regions of the pump, including the inlet, blade passage, exit volute, and diffuser, are reported at 20 phases of the cardiac cycle. The transient flow fields are compared to the constant flow rate condition that was reported previously in order to investigate the transient effects within the pump. It is shown that the quasi-steady assumption is a fair treatment of the time varying flow field in all regions of this representative pump, which greatly simplifies the comprehension and modeling of this flow field. The measurements are further interpreted to identify the effects that the transient nature of the flow field will have on blood damage. Although regions of recirculation and stagnant flow exist at some phases of the cardiac cycle, there is no location where flow is stagnant during the entire heartbeat.


Sign in / Sign up

Export Citation Format

Share Document