Reactive oxygen species and cyclooxygenase products explain the majority of hypoxic cerebral vasodilation in healthy humans

2019 ◽  
Vol 226 (4) ◽  
Author(s):  
John W. Harrell ◽  
Garrett L. Peltonen ◽  
William G. Schrage
2011 ◽  
Vol 301 (6) ◽  
pp. H2482-H2487 ◽  
Author(s):  
Alie Kanu ◽  
Charles W. Leffler

Arachidonic acid (AA) and prostaglandin (PG) E2 stimulate carbon monoxide (CO) production, and AA metabolism is known to be associated with the generation of reactive oxygen species (ROS). This study was conducted to address the hypothesis that CO and/or ROS mediate cerebrovascular dilation in newborn pigs. Experiments were performed on anesthetized newborn pigs with closed cranial windows. Different concentrations of AA (10−8-10−6 M), PGE2 (10−8-10−6 M), iloprost (10−8-10−6 M), and their vehicle (artificial cerebrospinal fluid) were given. Piglets with PGE2 and iloprost received indomethacin (5 mg/kg iv) to inhibit cyclooxygenase. AA, PGE2, and iloprost caused concentration-dependent increases in pial arteriolar diameter. The effects of both AA and PGE2 in producing cerebral vascular dilation and associated CO production were blocked by the heme oxygenase inhibitor chromium mesoporphyrin (2 × 10−5 M), but not by the prostacyclin analog, iloprost. ROS inhibitor tempol (SOD mimetic) (1 × 10−5 M) and the H2O2 scavenger catalase (1,000 U/ml) also do not block these vasodilator effects of AA and PGE2. Heme-l-lysinate-induced cerebrovascular dilation and CO production was blocked by chromium mesoporphyrin. Hypoxanthine plus xanthine oxidase, a combination that is known to generate ROS, caused pial arteriolar dilation and CO production that was inhibited by tempol and catalase. These data suggest that AA- and PGE2-induced cerebral vascular dilation is mediated by CO, independent of ROS.


2011 ◽  
Vol 111 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Marvin S. Medow ◽  
Natasha Bamji ◽  
Debbie Clarke ◽  
Anthony J. Ocon ◽  
Julian M. Stewart

Local cutaneous heating produces vasodilation that is largely nitric oxide (NO) dependent. We showed that angiotensin II (ANG II) attenuates this by an ANG II receptor, type 1 (AT1R)-dependent mechanism that is reversible with the antioxidant ascorbate, indicating oxidative stress. Reactive oxygen species (ROS) produced by ANG II employ NADPH and xanthine oxidase pathways. To determine whether these mechanisms pertain to skin, we measured cutaneous local heating with 10 μM ANG II, using apocynin to inhibit NADPH oxidase and allopurinol to inhibit xanthine oxidase. We also inhibited superoxide with tempol, and H2O2 with ebselen. We heated the skin of the calf in 8 healthy volunteers (24.5–29.9 yr old) to 42°C and measured local blood flow to assess the percentage of maximum cutaneous vascular conductance. We remeasured while perfusing allopurinol, apocynin, ebselen, and tempol through individual microdialysis catheters. This was then repeated with ANG II combined with antioxidant drugs. tempol and apocynin alone had no effect on the heat response. Allopurinol enhanced the entire response (125% of heat alone), while ebselen suppressed the heat plateau (76% of heat alone). ANG II alone caused significant attenuation of the entire heat response (52%). When added to ANG II, Allopurinol partially reversed the ANG II attenuation. Heat with ebselen and ANG II were similar to heat and ANG II; ebselen only partially reversed the ANG II attenuation. Apocynin and tempol each partially reversed the attenuation caused by ANG II. This suggests that ROS, produced by ANG II via NADPH and xanthine oxidase pathways, modulates the response of skin to the application of heat, and thus contributes to the control of local cutaneous blood flow.


2009 ◽  
pp. c3 ◽  
Author(s):  
Helena M. Cochemé ◽  
Michael P. Murphy

2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A361-A361
Author(s):  
K UCHIKURA ◽  
T WADA ◽  
Z SUN ◽  
S HOSHINO ◽  
G BULKLEY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document