reactive oxygen species signaling
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 24)

H-INDEX

33
(FIVE YEARS 3)

2021 ◽  
Vol 63 ◽  
pp. 102048
Author(s):  
Regina Gratz ◽  
Claudia von der Mark ◽  
Rumen Ivanov ◽  
Tzvetina Brumbarova

2021 ◽  
Vol 12 ◽  
Author(s):  
Pingping Wang ◽  
Tongtong Wang ◽  
Jingyi Han ◽  
Ming Li ◽  
Yanxiu Zhao ◽  
...  

Autophagy is a ubiquitous process used widely across plant cells to degrade cellular material and is an important regulator of plant growth and various environmental stress responses in plants. The initiation and dynamics of autophagy in plant cells are precisely controlled according to the developmental stage of the plant and changes in the environment, which are transduced into intracellular signaling pathways. These signaling pathways often regulate autophagy by mediating TOR (Target of Rapamycin) kinase activity, an important regulator of autophagy initiation; however, some also act via TOR-independent pathways. Under nutrient starvation, TOR activity is suppressed through glucose or ROS (reactive oxygen species) signaling, thereby promoting the initiation of autophagy. Under stresses, autophagy can be regulated by the regulatory networks connecting stresses, ROS and plant hormones, and in turn, autophagy regulates ROS levels and hormone signaling. This review focuses on the latest research progress in the mechanism of different external signals regulating autophagy.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2046
Author(s):  
Giulia Rigotto ◽  
Lorena Zentilin ◽  
Tullio Pozzan ◽  
Emy Basso

In Alzheimer’s disease (AD), the molecular mechanisms involved in the neurodegeneration are still incompletely defined, though this aspect is crucial for a better understanding of the malady and for devising effective therapies. Mitochondrial dysfunctions and altered Ca2+ signaling have long been implicated in AD, though it is debated whether these events occur early in the course of the pathology, or whether they develop at late stages of the disease and represent consequences of different alterations. Mitochondria are central to many aspects of cellular metabolism providing energy, lipids, reactive oxygen species, signaling molecules for cellular quality control, and actively shaping intracellular Ca2+ signaling, modulating the intensity and duration of the signal itself. Abnormalities in the ability of mitochondria to take up and subsequently release Ca2+ could lead to changes in the metabolism of the organelle, and of the cell as a whole, that eventually result in cell death. We sought to investigate the role of mitochondria and Ca2+ signaling in a model of Familial Alzheimer’s disease and found early alterations in mitochondria physiology under stressful condition, namely, reduced maximal respiration, decreased ability to sustain membrane potential, and a slower return to basal matrix Ca2+ levels after a mild excitotoxic stimulus. Treatment with an inhibitor of the permeability transition pore attenuated some of these mitochondrial disfunctions and may represent a promising tool to ameliorate mitochondria and cellular functioning in AD and prevent or slow down cell loss in the disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Barkha Ravi ◽  
Poonam Kanwar ◽  
Sibaji K. Sanyal ◽  
Malathi Bheri ◽  
Girdhar K. Pandey

The voltage-dependent anion channels (VDACs) are the most abundant proteins present on the outer mitochondrial membrane. They serve a myriad of functions ranging from energy and metabolite exchange to highly debatable roles in apoptosis. Their role in molecular transport puts them on the center stage as communicators between cytoplasmic and mitochondrial signaling events. Beyond their general role as interchangeable pores, members of this family may exhibit specific functions. Even after nearly five decades of their discovery, their role in plant systems is still a new and rapidly emerging field. The information on biochemical regulation of VDACs is limited. Various interacting proteins and post-translational modifications (PTMs) modulate VDAC functions, amongst these, phosphorylation is quite noticeable. In this review, we have tried to give a glimpse of the recent advancements in the biochemical/interactional regulation of plant VDACs. We also cover a critical analysis on the importance of PTMs in the functional regulation of VDACs. Besides, the review also encompasses numerous studies which can identify VDACs as a connecting link between Ca2+ and reactive oxygen species signaling in special reference to the plant systems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chieko Goto ◽  
Ikuko Hara-Nishimura ◽  
Kentaro Tamura

The shape of plant nuclei varies among different species, tissues, and cell types. In Arabidopsis thaliana seedlings, nuclei in meristems and guard cells are nearly spherical, whereas those of epidermal cells in differentiated tissues are elongated spindle-shaped. The vegetative nuclei in pollen grains are irregularly shaped in angiosperms. In the past few decades, it has been revealed that several nuclear envelope (NE) proteins play the main role in the regulation of the nuclear shape in plants. Some plant NE proteins that regulate nuclear shape are also involved in nuclear or cellular functions, such as nuclear migration, maintenance of chromatin structure, gene expression, calcium and reactive oxygen species signaling, plant growth, reproduction, and plant immunity. The shape of the nucleus has been assessed both by labeling internal components (for instance chromatin) and by labeling membranes, including the NE or endoplasmic reticulum in interphase cells and viral-infected cells of plants. Changes in NE are correlated with the formation of invaginations of the NE, collectively called the nucleoplasmic reticulum. In this review, what is known and what is unknown about nuclear shape determination are presented, and the physiological significance of the control of the nuclear shape in plants is discussed.


Plant Science ◽  
2021 ◽  
Vol 305 ◽  
pp. 110824
Author(s):  
Chuanbao Wu ◽  
Zhaoyu Gu ◽  
Tianzhong Li ◽  
Jie Yu ◽  
Chunsheng Liu ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244365
Author(s):  
Juan Wang ◽  
Yunxiang Zhang ◽  
Xingrong Yan ◽  
Jinping Guo

Yellow horn (Xanthoceras sorbifolia) is an oil-rich woody plant cultivated for bio-energy production in China. Soil saline-alkalization is a prominent agricultural-related environmental problem limiting plant growth and productivity. In this study, we performed comparative physiological and transcriptomic analyses to examine the mechanisms of X. sorbifolia seedling responding to salt and alkaline-salt stress. With the exception of chlorophyll content, physiological experiments revealed significant increases in all assessed indices in response to salt and saline-alkali treatments. Notably, compared with salt stress, we observed more pronounced changes in electrolyte leakage (EL) and malondialdehyde (MDA) levels in response to saline-alkali stress, which may contribute to the greater toxicity of saline-alkali soils. In total, 3,087 and 2,715 genes were differentially expressed in response to salt and saline-alkali treatments, respectively, among which carbon metabolism, biosynthesis of amino acids, starch and sucrose metabolism, and reactive oxygen species signaling networks were extensively enriched, and transcription factor families of bHLH, C2H2, bZIP, NAC, and ERF were transcriptionally activated. Moreover, relative to salt stress, saline-alkali stress activated more significant upregulation of genes related to H+ transport, indicating that regulation of intracellular pH may play an important role in coping with saline-alkali stress. These findings provide new insights for investigating the physiological changes and molecular mechanisms underlying the responses of X. sorbifolia to salt and saline-alkali stress.


Sign in / Sign up

Export Citation Format

Share Document