Effects of replacing fish meal with mussel (Cristaria plicata ) meat on growth, digestive ability, antioxidant capacity and hepatic IGF-I gene expression in juvenile Ussuri catfish (Pseudobagrus ussuriensis )

2019 ◽  
Vol 50 (3) ◽  
pp. 826-835
Author(s):  
Chengzeng Luo ◽  
Yi Wang ◽  
Shengqiang Tao ◽  
Yilu Liao ◽  
Chenghui Yang ◽  
...  
1990 ◽  
Vol 125 (3) ◽  
pp. 381-386 ◽  
Author(s):  
K. E. Bornfeldt ◽  
H. J. Arnqvist ◽  
G. Norstedt

ABSTRACT The aim of this investigation was to study the regulation of insulin-like growth factor-I (IGF-I) gene expression in cultured rat aortic smooth muscle cells. Near-confluent cells were deprived of serum for 24 h and then exposed to IGF-I, insulin, serum, basic fibroblast growth factor (basic FGF), platelet-derived growth factor (PDGF-BB; consisting of B-chain homodimer) or GH for 24 h. Levels of IGF-I mRNA were measured by solution hybridization. The level of IGF-I mRNA was markedly decreased by 10% (v/v) newborn calf serum (78 ± 4 (s.e.m.) % decrease), 1 nmol basic FGF/1 (53 ± 8%), and 1 nmol PDGF-BB/1 (40 ± 3%) when measured after 24 h. The effect of PDGF-BB was significant after 6 h and became more marked after 24 h. GH (1 nmol/l or 0.1 μmol/l or insulin (1 nmol/l had no effect after 24 h, whereas IGF-I (1 nmol/l and insulin (10 μmol/l increased IGF-I mRNA 64 ± 20% and 46±14% respectively. The increase caused by IGF-I was demonstrated after 3 h, and was most marked after 24 h. Using Northern blot analysis of cultured aortic smooth muscle cells, IGF-I transcripts of 7-4, 1.7 and 1.1–0.8 kilobases were observed. Exposure of the cells to 10% serum, 1 nmol basic FGF/1 or 1 nmol PDGF-BB/1 for 48 h increased the cell number by 104 ±7%, 64 ± 3% and 61±22% respectively, while IGF-I, insulin and GH had little effect. In conclusion, IGF-I, and high concentrations of insulin, increased IGF-I mRNA in vascular smooth muscle cells, whereas factors which were stronger mitogens decreased IGF-I gene expression. Journal of Endocrinology (1990) 125, 381–386


2015 ◽  
Vol 47 (11) ◽  
pp. 559-568 ◽  
Author(s):  
Damir Alzhanov ◽  
Aditi Mukherjee ◽  
Peter Rotwein

Growth hormone (GH) plays a central role in regulating somatic growth and in controlling multiple physiological processes in humans and other vertebrates. A key agent in many GH actions is the secreted peptide, IGF-I. As established previously, GH stimulates IGF-I gene expression via the Stat5b transcription factor, leading to production of IGF-I mRNAs and proteins. However, the precise mechanisms by which GH-activated Stat5b promotes IGF-I gene transcription have not been defined. Unlike other GH-regulated genes, there are no Stat5b sites near either of the two IGF-I gene promoters. Although dispersed GH-activated Stat5b binding elements have been mapped in rodent Igf1 gene chromatin, it is unknown how these distal sites might function as potential transcriptional enhancers. Here we have addressed mechanisms of regulation of IGF-I gene transcription by GH by generating cell lines in which the rat Igf1 chromosomal locus has been incorporated into the mouse genome. Using these cells we find that physiological levels of GH rapidly and potently activate Igf1 gene transcription while stimulating physical interactions in chromatin between inducible Stat5b-binding elements and the Igf1 promoters. We have thus developed a robust experimental platform for elucidating how dispersed transcriptional enhancers control Igf1 gene expression under different biological conditions.


1993 ◽  
Vol 139 (1) ◽  
pp. 143-152 ◽  
Author(s):  
S. T. Charlton ◽  
J. R. Cosgrove ◽  
D. R. Glimm ◽  
G. R. Foxcroft

ABSTRACT The effects of feed restriction and refeeding on ovarian and hepatic insulin-like growth factor-I (IGF-I) gene expression, systemic and ovarian IGF-I concentrations and on associated metabolic changes were measured in prepubertal gilts. Eleven pairs of littermate gilts (70·7 ± 4·7 kg) were placed on a maintenance level of feeding for 7 days (days 1–7). On day 8, littermates were either fed at a maintenance level of energy or fed to appetite for a further 6 days. Blood samples were taken on day 13 (07.00–16.00 h) to determine plasma insulin and IGF-I, and on day 14 (02.00–06.00 h) to determine plasma GH levels. Following slaughter on day 14, one ovary from each animal was retained to measure follicular fluid IGF-I and oestradiol concentrations. The remaining ovary and a sample of liver were retained for IGF-I mRNA analysis using a ribonuclease protection assay. Six days of refeeding significantly increased plasma IGF-I (P<0·005) and basal insulin (P<0·05) but there was no effect on plasma GH. Ovarian follicular volume and diameter were significantly larger after refeeding (P<0·05), with no effect on follicular fluid oestradiol concentrations. Mean follicular fluid IGF-I concentrations were unaffected by treatment. However, the relationships between individual follicular IGF-I concentrations, absolute follicular fluid IGF-I contents and follicle volume were affected by feeding level (P<0·05). Regression analysis of the same data also revealed that at this stage of maturity, small follicles had greater follicular fluid concentrations of IGF-I than larger follicles. Refeeding increased the amount of IGF-I mRNA in hepatic but not ovarian tissue. We conclude that there is differential regulation of the IGF-I gene in porcine hepatic and ovarian tissues, and that ovarian factors other than, or as well as, IGF-I are involved in the regulation of ovarian responses to refeeding. Journal of Endocrinology (1993) 139, 143–152


Sign in / Sign up

Export Citation Format

Share Document