Beyond species richness and community composition: using plant functional diversity to measure restoration success in jarrah forest

Author(s):  
Rachel Jayne Standish ◽  
Aaron David Gove ◽  
Andrew Haden Grigg ◽  
Matthew Ian Daws
2017 ◽  
Vol 8 (1) ◽  
pp. 601-616 ◽  
Author(s):  
Verena Busch ◽  
Valentin H. Klaus ◽  
Caterina Penone ◽  
Deborah Schäfer ◽  
Steffen Boch ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Anette Teittinen ◽  
Leena Virta

Biodiversity has traditionally been quantified using taxonomic information but the importance of also considering its functional characteristics has recently gained an increasing attention among microorganisms. However, studies exploring multiple aspects of taxonomic and functional diversity and their temporal variations are scarce for diatoms, which is one of the most important microbial groups in aquatic ecosystems. Here, our aim was to examine the taxonomic and functional alpha and beta diversities of diatoms in a coastal rock pool system characterized by a naturally high environmental heterogeneity. We also investigated the temporal differences in the diversity patterns and drivers. The relationship between the species richness and functional dispersion was temporally coherent, such that species-poor communities tended to be functionally clustered. The trend between the species richness and taxonomic uniqueness of community composition was temporally inconsistent, changing from negative to non-significant over time. Conductivity or distance to the sea or both were key determinants of species richness, functional dispersion, and uniqueness of community composition. The increase of community dissimilarity with an increasing environmental distance was stronger for the taxonomic than the functional composition. Our results suggest that even minor decreases in the species richness may result in a lowered functional diversity and decreased ecosystem functioning. Species-poor ecosystems may, however, have unique species compositions and high contributions to regional biodiversity. Despite changing the species compositions along the environmental gradients, communities may remain to have a high functional similarity and robustness in the face of environmental changes. Our results highlight the advantage of considering multiple biodiversity metrics and incorporating a temporal component for a deeper understanding of the effects of environmental changes on microbial biodiversity.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 275
Author(s):  
Mariana A. Tsianou ◽  
Maria Lazarina ◽  
Danai-Eleni Michailidou ◽  
Aristi Andrikou-Charitidou ◽  
Stefanos P. Sgardelis ◽  
...  

The ongoing biodiversity crisis reinforces the urgent need to unravel diversity patterns and the underlying processes shaping them. Although taxonomic diversity has been extensively studied and is considered the common currency, simultaneously conserving other facets of diversity (e.g., functional diversity) is critical to ensure ecosystem functioning and the provision of ecosystem services. Here, we explored the effect of key climatic factors (temperature, precipitation, temperature seasonality, and precipitation seasonality) and factors reflecting human pressures (agricultural land, urban land, land-cover diversity, and human population density) on the functional diversity (functional richness and Rao’s quadratic entropy) and species richness of amphibians (68 species), reptiles (107 species), and mammals (176 species) in Europe. We explored the relationship between different predictors and diversity metrics using generalized additive mixed model analysis, to capture non-linear relationships and to account for spatial autocorrelation. We found that at this broad continental spatial scale, climatic variables exerted a significant effect on the functional diversity and species richness of all taxa. On the other hand, variables reflecting human pressures contributed significantly in the models even though their explanatory power was lower compared to climatic variables. In most cases, functional richness and Rao’s quadratic entropy responded similarly to climate and human pressures. In conclusion, climate is the most influential factor in shaping both the functional diversity and species richness patterns of amphibians, reptiles, and mammals in Europe. However, incorporating factors reflecting human pressures complementary to climate could be conducive to us understanding the drivers of functional diversity and richness patterns.


2021 ◽  
Author(s):  
Elizabeth J Messick ◽  
Christopher E Comer ◽  
Michael A Blazier ◽  
T Bently Wigley

Abstract In the southern United States, some landowners have established plantations of eucalyptus (Eucalyptus spp.) and are managing them on short rotations (<15 years) to provide wood for fiber and other potential uses. Establishment of short-rotation woody crops dominated by nonnative species has implications for resident fauna in the United States that are largely unknown. We compared avifauna abundance, diversity, and community composition in newly established Camden white gum (Eucalyptus benthamii) plantations with slash pine (Pinus elliottii) plantations of the same age and height (one to two and six to seven years old, respectively) in southwestern Louisiana, USA. Species richness, diversity, and community composition in newly established eucalyptus plantations and six- to seven-year-old pines were similar. More birds were observed, and bird detections varied less in eucalyptus plantations. Indigo buntings (Passerina cyanea) and other shrub-associated species were detected more often in eucalyptus stands. In contrast, species that inhabit herbaceous-dominated communities, such as eastern meadowlarks (Sturnella magna), or that were associated with a dense graminoid community (e.g., Bachman’s sparrow [Peucaea aestivalis]) were detected less often in eucalyptus. Overall, breeding bird communities in eucalyptus plantations one to two years postestablishment differed little from plantations dominated by slash pine. Study Implications Compared with slash pine (Pinus elliottii Englem) plantations of similar age and height (one to two years and six to seven years old, respectively) we found one- to two-year-old eucalyptus (Eucalyptus benthamii Maiden & Cambage) plantations supported similar avian species richness and diversity to six- to seven-year-old pine stands. Furthermore, we found these eucalyptus plantations (E13) supported an avian community that was intermediate to similar aged pine (S13) and pine of similar height (S08). However, avian communities will likely change as eucalyptus plantations age (Christian et al. 1997). Continued monitoring and assessment of community composition, richness, and abundance is important for determining the magnitude of this change. Future investigations focused on nest success, fecundity, postfledging monitoring, and survivorship compared with other types of planted forests and native cover types would help us better understand eucalyptus plantation effects on avifauna demographics (Van Horne 1983, Martin 1998, Jones 2001, Wood et al. 2004, Sage et al. 2006, Riffell et al. 2011).


Sign in / Sign up

Export Citation Format

Share Document