scholarly journals Senescent murine femoral arteries undergo vascular remodeling associated with accelerated stress‐induced contractility and reactivity to nitric oxide

Author(s):  
Lubomir T. Lubomirov ◽  
Monique Heidrun Jänsch ◽  
Symeon Papadopoulos ◽  
Mechthild M. Schroeter ◽  
Doris Metzler ◽  
...  
Biomaterials ◽  
2021 ◽  
pp. 121254
Author(s):  
Maheshika Somarathna ◽  
Patrick TJ. Hwang ◽  
Reid C. Millican ◽  
Grant C. Alexander ◽  
Tatyana Isayeva-Waldrop ◽  
...  

2002 ◽  
Vol 92 (5) ◽  
pp. 2012-2018 ◽  
Author(s):  
Damian J. Horstman ◽  
Lars G. Fischer ◽  
Peter C. Kouretas ◽  
Robert L. Hannan ◽  
George F. Rich

Heparin and nitric oxide (NO) attenuate changes to the pulmonary vasculature caused by prolonged hypoxia. Heparin may increase NO; therefore, we hypothesized that heparin may attenuate hypoxia-induced pulmonary vascular remodeling via a NO-mediated mechanism. In vivo, rats were exposed to normoxia (N) or hypoxia (H; 10% O2) with or without heparin (1,200 U · kg−1 · day−1) and/or the NO synthase (NOS) inhibitor N ω-nitro-l-arginine methyl ester (l-NAME; 20 mg · kg−1 · day−1) for 3 days or 3 wk. Heparin attenuated increases in pulmonary arterial pressure, the percentage of muscular pulmonary vessels, and their medial thickness induced by 3 wk of H. Importantly, althoughl-NAME alone had no effect, it prevented these effects of heparin on vascular remodeling. In H lungs, heparin increased NOS activity and cGMP levels at 3 days and 3 wk and endothelial NOS protein expression at 3 days but not at 3 wk. In vitro, heparin (10 and 100 U · kg−1 · ml−1) increased cGMP levels after 10 min and 24 h in N and anoxic (0% O2) endothelial cell-smooth muscle cell (SMC) coculture. SMC proliferation, assessed by 5-bromo-2′-deoxyuridine incorporation during a 3-h incubation period, was decreased by heparin under N, but not anoxic, conditions. The antiproliferative effects of heparin were not altered byl-NAME. In conclusion, the in vivo results suggest that attenuation of hypoxia-induced pulmonary vascular remodeling by heparin is NO mediated. Heparin increases cGMP in vitro; however, the heparin-induced decrease in SMC proliferation in the coculture model appears to be NO independent.


2005 ◽  
Vol 289 (6) ◽  
pp. L1083-L1093 ◽  
Author(s):  
C. M. Littler ◽  
C. A. Wehling ◽  
M. J. Wick ◽  
K. A. Fagan ◽  
C. D. Cool ◽  
...  

Loss of PKC-ε limits the magnitude of acute hypoxic pulmonary vasoconstriction (HPV) in the mouse. Therefore, we hypothesized that loss of PKC-ε would decrease the contractile and/or structural response of the murine pulmonary circulation to chronic hypoxia (Hx). However, the pattern of lung vascular responses to chronic Hx may or may not be predicted by the acute HPV response. Adult PKC-ε wild-type (PKC-ε+/+), heterozygous null, and homozygous null (PKC-ε−/−) mice were exposed to normoxia or Hx for 5 wk. PKC-ε−/− mice actually had a greater increase in right ventricular (RV) systolic pressure, RV mass, and hematocrit in response to chronic Hx than PKC-ε+/+ mice. In contrast to the augmented PA pressure and RV hypertrophy, pulmonary vascular remodeling was increased less than expected (i.e., equal to PKC-ε+/+ mice) in both the proximal and distal PKC-ε−/− pulmonary vasculature. The contribution of increased vascular tone to this pulmonary hypertension (PHTN) was assessed by measuring the acute vasodilator response to nitric oxide (NO). Acute inhalation of NO reversed the increased PA pressure in hypoxic PKC-ε−/− mice, implying that the exaggerated PHTN may be due to a relative deficiency in nitric oxide synthase (NOS). Despite the higher PA pressure, chronic Hx stimulated less of an increase in lung endothelial (e) and inducible (i) NOS expression in PKC-ε−/− than PKC-ε+/+ mice. In contrast, expression of nNOS in PKC-ε+/+ mice decreased in response to chronic Hx, while lung levels in PKC-ε−/− mice remained unchanged. In summary, loss of PKC-ε results in increased vascular tone, but not pulmonary vascular remodeling in response to chronic Hx. Blunting of Hx-induced eNOS and iNOS expression may contribute to the increased vascular tone. PKC-ε appears to be an important signaling intermediate in the hypoxic regulation of each NOS isoform.


1994 ◽  
Vol 113 (2) ◽  
pp. 550-554 ◽  
Author(s):  
N. Fernández ◽  
L. Monge ◽  
A.L. Garcia-Villalón ◽  
J.L. Garcia ◽  
B. Gómez ◽  
...  

2003 ◽  
Vol 94 (3) ◽  
pp. 935-940 ◽  
Author(s):  
John B. Buckwalter ◽  
Valerie C. Curtis ◽  
Zoran Valic ◽  
Stephen B. Ruble ◽  
Philip S. Clifford

To test the hypothesis that nitric oxide (NO) production is essential for endogenous vascular remodeling in ischemic skeletal muscle, 22 New Zealand White rabbits were chronically instrumented with transit-time flow probes on the common iliac arteries and underwent femoral ligation to produce unilateral hindlimb ischemia. Iliac blood flow and arterial pressure were recorded at rest and during a graded exercise test. An osmotic pump connected to a femoral arterial catheter continuously delivered N-nitro-l-arginine methyl ester (a NO synthase inhibitor) or a control solution ( N-nitro-d-arginine methyl ester or phenylephrine) to the ischemic limb over a 2-wk period. At 1, 3, and 6 wk after femoral ligation, maximal treadmill exercise blood flow in the ischemic limb was reduced compared with baseline in each group. However, maximal exercise blood flow was significantly ( P < 0.05) lower in the l-NAME-treated group than in controls for the duration of the study: 48 ± 4 vs. 60 ± 5 ml/min at 6 wk. Consistent with the reduction in maximal blood flow response, the duration of voluntary exercise was also substantially ( P < 0.05) shorter in thel-NAME-treated group: 539 ± 67 vs. 889 ± 87 s. Resting blood flow was unaffected by femoral ligation in either group. The results of this study show that endogenous vascular remodeling, which partially alleviated the initial deficit in blood flow, was interrupted by NO synthase inhibition. Therefore, we conclude that NO is essential for endogenous collateral development and angiogenesis in ischemic skeletal muscle in the rabbit.


1993 ◽  
Vol 30 (6) ◽  
pp. 339-347 ◽  
Author(s):  
Mar&iacute;a J. Alonso ◽  
Mercedes Salaices ◽  
Carlos F. S&aacute;nchez-Ferrer ◽  
Ana Ponte ◽  
Mercedes L&oacute;pez-Rico ◽  
...  

1995 ◽  
Vol 32 (6) ◽  
pp. 387-397 ◽  
Author(s):  
Angel Luis García-Villalón ◽  
Nuria Fernández ◽  
Luis Monge ◽  
José Luis García ◽  
Bernardino Gómez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document