scholarly journals Phenological matching rather than genetic variation in host preference underlies geographical variation in host plants used by orange tip butterflies

2016 ◽  
Vol 119 (4) ◽  
pp. 1060-1067 ◽  
Author(s):  
Sandra Stålhandske ◽  
Martin Olofsson ◽  
Karl Gotthard ◽  
Johan Ehrlén ◽  
Christer Wiklund ◽  
...  
2010 ◽  
Vol 63 ◽  
pp. 275-275
Author(s):  
A.J. Puketapu

The tomato/potato psyllid Bactericera cockerelli (Sulc) (Hemiptera Triozidae) is an introduced pest of solanaceous crops in New Zealand A range of established plants play host to Bactericera cockerelli including three traditional Maori food sources taewa or Maori potatoes (Solanum tuberosum ssp andigena) kumara (Ipomoea batatas) and poroporo (Solanum aviculare) Taewa and kumara are highly susceptible to summer B cockerelli infestation whilst poroporo an evergreen plant remains susceptible yearround and provides overwintering refuge Extensive monitoring of each host plant was carried out to determine the significance of each host in the lifecycle of B cockerelli in New Zealand Poroporo was monitored from late autumn for 6 months to determine if the plant served as a significant overwintering host for the pest after harvesting summer crops Taewa and kumara plants were monitored throughout the summer growing season on a weekly basis increasing to twice a week as populations proliferated Host plants were monitored both in the natural environment and under laboratory conditions Data collected contributed to tracking population development of B cockerelli on each host including the length of each life stage (ie egg nymph adult) Comparisons between the three hosts revealed host preference host suitability and the significance of each host in the lifecycle progression of B cockerelli


2014 ◽  
Vol 281 (1797) ◽  
pp. 20142036 ◽  
Author(s):  
Anna K. Simonsen ◽  
John R. Stinchcombe

Many models of mutualisms show that mutualisms are unstable if hosts lack mechanisms enabling preferential associations with mutualistic symbiotic partners over exploitative partners. Despite the theoretical importance of mutualism-stabilizing mechanisms, we have little empirical evidence to infer their evolutionary dynamics in response to exploitation by non-beneficial partners. Using a model mutualism—the interaction between legumes and nitrogen-fixing soil symbionts—we tested for quantitative genetic variation in plant responses to mutualistic and exploitative symbiotic rhizobia in controlled greenhouse conditions. We found significant broad-sense heritability in a legume host's preferential association with mutualistic over exploitative symbionts and selection to reduce frequency of associations with exploitative partners. We failed to detect evidence that selection will favour the loss of mutualism-stabilizing mechanisms in the absence of exploitation, as we found no evidence for a fitness cost to the host trait or indirect selection on genetically correlated traits. Our results show that genetic variation in the ability to preferentially reduce associations with an exploitative partner exists within mutualisms and is under selection, indicating that micro-evolutionary responses in mutualism-stabilizing traits in the face of rapidly evolving mutualistic and exploitative symbiotic bacteria can occur in natural host populations.


2005 ◽  
Vol 71 (5) ◽  
pp. 2418-2432 ◽  
Author(s):  
Gale Wichmann ◽  
David Ritchie ◽  
C. S. Kousik ◽  
Joy Bergelson

ABSTRACT The bacterial plant pathogen Xanthomonas axonopodis pv. vesicatoria, also known as Xanthomonas campestris pv. vesicatoria group A, is the causal agent of bacterial spot in pepper and tomato. In order to test different models that may explain the coevolution of avrBs2 with its host plants, we sequenced avrBs2 and six chromosomal loci (total of 5.5 kb per strain) from a global sample of 55 X. axonopodis pv. vesicatoria strains collected from diseased peppers. We found an extreme lack of genetic variation among all X. axonopodis pv. vesicatoria genomic loci (average nucleotide diversity, π = 9.1 × 10−5), including avrBs2. This lack of diversity is consistent with X. axonopodis pv. vesicatoria having undergone a recent population bottleneck and/or selective sweep followed by population expansion. Coalescent analysis determined that approximately 1.4 × 104 to 7.16 × 104 bacterial generations have passed since the most recent common ancestor (MRCA) of the current X. axonopodis pv. vesicatoria population. Assuming a range of 50 to 500 bacterial generations per year, only 28 to 1,432 years have passed since the MRCA. This time frame coincides with human intervention with the pathogen's host plants, from domestication to modern agricultural practices. Examination of 19 mutated (loss-of-function) avrBs2 alleles detected nine classes of mutations. All mutations affected protein coding, while no synonymous changes were found. The nature of at least one of the avrBs2 mutations suggests that it may be possible to observe one stage of an evolutionary arms race as X. axonopodis pv. vesicatoria responds to selection pressure to alter avrBs2 to escape host plant resistance.


PLoS ONE ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. e0164552 ◽  
Author(s):  
Delfina Salinas-Vargas ◽  
Ma. Teresa Santillán-Galicia ◽  
Ariel W. Guzmán-Franco ◽  
Antonio Hernández-López ◽  
Laura D. Ortega-Arenas ◽  
...  

Author(s):  
Bulbul Ahmed ◽  
Mohamed Hijri

Cannabis is one of the oldest cultivated crops in the history for food, fiber and drugs for thousands of years. Extension of cannabis genetic variation developed in a wide- ranging choice of varieties with various complementary phenotypes and secondary metabolites. Cannabis grow practices is very diverse, especially indoor cultivation factors, such as different lighting conditions, pot size, humidity, fertilizers. These growth factors influence a lot on the production of cannabinoids. For medical or pharmaceutical purposes, ratio of CBD or THC is very important. Plants traits and metabolic compounds are related to various conditions produced by microbes. Investigating this crosstalk between plants and microbes can play a vital role not only for stimulating the biosynthetic and signaling pathways of the host plants for the production of agronomically or pharmaceutically essential metabolic compounds but also against pathogens. This study emphasis on decoding the crosstalk between cannabis and associated microbes in the belowground environmental niches that would unravel the complexity of stabilizing cannabinoid production.


2020 ◽  
Author(s):  
Wee L Yee ◽  
Robert B Goughnour ◽  
Jeffrey L Feder

Abstract Closely related phytophagous insects that specialize on different host plants may have divergent responses to environmental factors. Rhagoletis pomonella (Walsh) and Rhagoletis zephyria Snow (Diptera: Tephritidae) are sibling, sympatric fly species found in western North America that attack and mate on plants of Rosaceae (~60 taxa) and Caprifoliaceae (three taxa), respectively, likely contributing to partial reproductive isolation. Rhagoletis zephyria evolved from R. pomonella and is native to western North America, whereas R. pomonella was introduced there. Given that key features of the flies’ ecology, breeding compatibility, and evolution differ, we predicted that adult eclosion patterns of the two flies from Washington State, USA are also distinct. When puparia were chilled, eclosion of apple- and black hawthorn-origin R. pomonella was significantly more dispersed, with less pronounced peaks, than of snowberry-origin R. zephyria within sympatric and nonsympatric site comparisons. Percentages of chilled puparia that produced adults were ≥67% for both species. However, when puparia were not chilled, from 13.5 to 21.9% of apple-origin R. pomonella versus only 1.2% to 1.9% of R. zephyria eclosed. The distinct differences in eclosion traits of R. pomonella and R. zephyria could be due to greater genetic variation in R. pomonella, associated with its use of a wider range of host plants than R. zephyria.


Sign in / Sign up

Export Citation Format

Share Document