A New, Improved Hybrid Scoring Function for Molecular Docking and Scoring Based on AutoDock and AutoDock Vina

2015 ◽  
Vol 87 (4) ◽  
pp. 618-625 ◽  
Author(s):  
Vsevolod Yu Tanchuk ◽  
Volodymyr O. Tanin ◽  
Andriy I. Vovk ◽  
Gennady Poda
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Andrew T. McNutt ◽  
Paul Francoeur ◽  
Rishal Aggarwal ◽  
Tomohide Masuda ◽  
Rocco Meli ◽  
...  

AbstractMolecular docking computationally predicts the conformation of a small molecule when binding to a receptor. Scoring functions are a vital piece of any molecular docking pipeline as they determine the fitness of sampled poses. Here we describe and evaluate the 1.0 release of the Gnina docking software, which utilizes an ensemble of convolutional neural networks (CNNs) as a scoring function. We also explore an array of parameter values for Gnina 1.0 to optimize docking performance and computational cost. Docking performance, as evaluated by the percentage of targets where the top pose is better than 2Å root mean square deviation (Top1), is compared to AutoDock Vina scoring when utilizing explicitly defined binding pockets or whole protein docking. Gnina, utilizing a CNN scoring function to rescore the output poses, outperforms AutoDock Vina scoring on redocking and cross-docking tasks when the binding pocket is defined (Top1 increases from 58% to 73% and from 27% to 37%, respectively) and when the whole protein defines the binding pocket (Top1 increases from 31% to 38% and from 12% to 16%, respectively). The derived ensemble of CNNs generalizes to unseen proteins and ligands and produces scores that correlate well with the root mean square deviation to the known binding pose. We provide the 1.0 version of Gnina under an open source license for use as a molecular docking tool at https://github.com/gnina/gnina.


2021 ◽  
Author(s):  
Andrew McNutt ◽  
Paul Francoeur ◽  
Rishal Aggarwal ◽  
Tomohide Masuda ◽  
Rocco Meli ◽  
...  

Molecular docking computationally predicts the conformation of a small molecule when binding to a receptor. Scoring functions are a vital piece of any molecular docking pipeline as they determine the fitness of sampled poses. Here we describe and evaluate the 1.0 release of the Gnina docking software, which utilizes an ensemble of convolutional neural networks (CNNs) as a scoring function. We also explore an array of parameter values for Gnina 1.0 to optimize docking performance and computational cost. Docking performance, as evaluated by the percentage of targets where the top pose is better than 2A root mean square deviation (Top1), is compared to AutoDock Vina scoring when utilizing explicitly defined binding pockets or whole protein docking. Gnina, utilizing a CNN scoring function to rescore the output poses, outperforms AutoDock Vina scoring on redocking and cross-docking tasks when the binding pocket is defined (Top1 increases from 58% to 73% and from 27% to 37%, respectively) and when the whole protein defines the binding pocket (Top1 increases from 31% to 38% and from 12% to 16%, respectively). The derived ensemble of CNNs generalizes to unseen proteins and ligands and produces scores that correlate well with the root mean square deviation to the known binding pose. We provide the 1.0 version of Gnina under and open source license for use as a molecular docking tool at https://github.com/gnina/gnina.


2020 ◽  
Author(s):  
Baldomero Imbernón ◽  
Antonio Serrano ◽  
Andrés Bueno-Crespo ◽  
José L Abellán ◽  
Horacio Pérez-Sánchez ◽  
...  

Abstract Motivation Molecular docking methods are extensively used to predict the interaction between protein–ligand systems in terms of structure and binding affinity, through the optimization of a physics-based scoring function. However, the computational requirements of these simulations grow exponentially with: (i) the global optimization procedure, (ii) the number and degrees of freedom of molecular conformations generated and (iii) the mathematical complexity of the scoring function. Results In this work, we introduce a novel molecular docking method named METADOCK 2, which incorporates several novel features, such as (i) a ligand-dependent blind docking approach that exhaustively scans the whole protein surface to detect novel allosteric sites, (ii) an optimization method to enable the use of a wide branch of metaheuristics and (iii) a heterogeneous implementation based on multicore CPUs and multiple graphics processing units. Two representative scoring functions implemented in METADOCK 2 are extensively evaluated in terms of computational performance and accuracy using several benchmarks (such as the well-known DUD) against AutoDock 4.2 and AutoDock Vina. Results place METADOCK 2 as an efficient and accurate docking methodology able to deal with complex systems where computational demands are staggering and which outperforms both AutoDock Vina and AutoDock 4. Availability and implementation https://[email protected]/Baldoimbernon/metadock_2.git. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Andrew McNutt ◽  
Paul Francoeur ◽  
Rishal Aggarwal ◽  
Tomohide Masuda ◽  
Rocco Meli ◽  
...  

Molecular docking computationally predicts the conformation of a small molecule when binding to a receptor. Scoring functions are a vital piece of any molecular docking pipeline as they determine the fitness of sampled poses. Here we describe and evaluate the 1.0 release of the Gnina docking software, which utilizes an ensemble of convolutional neural networks (CNNs) as a scoring function. We also explore an array of parameter values for Gnina 1.0 to optimize docking performance and computational cost. Docking performance, as evaluated by the percentage of targets where the top pose is better than 2A root mean square deviation (Top1), is compared to AutoDock Vina scoring when utilizing explicitly defined binding pockets or whole protein docking. Gnina, utilizing a CNN scoring function to rescore the output poses, outperforms AutoDock Vina scoring on redocking and cross-docking tasks when the binding pocket is defined (Top1 increases from 58% to 73% and from 27% to 37%, respectively) and when the whole protein defines the binding pocket (Top1 increases from 31% to 38% and from 12% to 16%, respectively). The derived ensemble of CNNs generalizes to unseen proteins and ligands and produces scores that correlate well with the root mean square deviation to the known binding pose. We provide the 1.0 version of Gnina under and open source license for use as a molecular docking tool at https://github.com/gnina/gnina.


2015 ◽  
Vol 12 (3) ◽  
pp. 170-178 ◽  
Author(s):  
Vsevolod Tanchuk ◽  
Volodymyr Tanin ◽  
Andriy Vovk ◽  
Gennady Poda

2020 ◽  
Vol 21 (24) ◽  
pp. 9548
Author(s):  
Gabriele Macari ◽  
Daniele Toti ◽  
Andrea Pasquadibisceglie ◽  
Fabio Polticelli

Motivation: Bringing a new drug to the market is expensive and time-consuming. To cut the costs and time, computer-aided drug design (CADD) approaches have been increasingly included in the drug discovery pipeline. However, despite traditional docking tools show a good conformational space sampling ability, they are still unable to produce accurate binding affinity predictions. This work presents a novel scoring function for molecular docking seamlessly integrated into DockingApp, a user-friendly graphical interface for AutoDock Vina. The proposed function is based on a random forest model and a selection of specific features to overcome the existing limits of Vina’s original scoring mechanism. A novel version of DockingApp, named DockingApp RF, has been developed to host the proposed scoring function and to automatize the rescoring procedure of the output of AutoDock Vina, even to nonexpert users. Results: By coupling intermolecular interaction, solvent accessible surface area features and Vina’s energy terms, DockingApp RF’s new scoring function is able to improve the binding affinity prediction of AutoDock Vina. Furthermore, comparison tests carried out on the CASF-2013 and CASF-2016 datasets demonstrate that DockingApp RF’s performance is comparable to other state-of-the-art machine-learning- and deep-learning-based scoring functions. The new scoring function thus represents a significant advancement in terms of the reliability and effectiveness of docking compared to AutoDock Vina’s scoring function. At the same time, the characteristics that made DockingApp appealing to a wide range of users are retained in this new version and have been complemented with additional features.


2020 ◽  
Author(s):  
Kin Meng Wong ◽  
Shirley Siu

Protein-ligand docking programs are indispensable tools for predicting the binding pose of a ligand to the receptor protein in current structure-based drug design. In this paper, we evaluate the performance of grey wolf optimization (GWO) in protein-ligand docking. Two versions of the GWO docking program – the original GWO and the modified one with random walk – were implemented based on AutoDock Vina. Our rigid docking experiments show that the GWO programs have enhanced exploration capability leading to significant speedup in the search while maintaining comparable binding pose prediction accuracy to AutoDock Vina. For flexible receptor docking, the GWO methods are competitive in pose ranking but lower in success rates than AutoDockFR. Successful redocking of all the flexible cases to their holo structures reveals that inaccurate scoring function and lack of proper treatment of backbone are the major causes of docking failures.


Molbank ◽  
10.3390/m1234 ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. M1234
Author(s):  
Nazim Hussain ◽  
Bibhuti Bhushan Kakoti ◽  
Mithun Rudrapal ◽  
Khomendra Kumar Sarwa ◽  
Ismail Celik ◽  
...  

Cordia dichotoma Forst. (F. Boraginaceae) has been traditionally used for the management of a variety of human ailments. In our earlier work, the antidiabetic activity of methanolic bark extract of C. dichotoma (MECD) has been reported. In this paper, two flavonoid molecules were isolated (by column chromatography) and identified (by IR, NMR and mass spectroscopy/spectrometry) from the MECD with an aim to investigate their antidiabetic effectiveness. Molecular docking and ADMET studies were carried out using AutoDock Vina software and Swiss ADME online tool, respectively. The isolated flavonoids were identified as 3,5,7,3′,4′-tetrahydroxy-4-methoxyflavone-3-O-L-rhamnopyranoside and 5,7,3′-trihydroxy-4-methoxyflavone-7-O-L-rhamnopyranoside (quercitrin). Docking and ADMET studies revealed the promising binding affinity of flavonoid molecules for human lysosomal α-glucosidase and human pancreatic α-amylase with acceptable ADMET properties. Based on computational studies, our study reports the antidiabetic potential of the isolated flavonoids with predictive pharmacokinetics profile.


Author(s):  
Peter Juma Ochieng ◽  
Tony Sumaryada ◽  
Daniel Okun

  Objective: To perform molecular docking and pharmacokinetic prediction of momordicoside F2, beta-sitosterol, and cis-N-feruloyltyramine herbal derivatives as maltase-glucoamylase (MGAM) inhibitors for the treatment of diabetes.Methods: The herbal derivatives and standard drug miglitol were docked differently onto MGAM receptor using AutoDock Vina software. In addition, Lipinski’s rule, drug-likeness, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties were analyzed using Molinspiration, ADMET structure–activity relationship, and prediction of activity spectra for substances online tools.Results: Docking studies reveal that momordicoside F2, beta-sitosterol, and cis-N-feruloyltyramine derivatives have high binding affinity to the MGAM receptor (−7.8, −6.8, and −6.5 Kcal/Mol, respectively) as compared to standard drug miglitol (−5.3 Kcal/Mol). In addition, all the herbal derivatives indicate good bioavailability (topological polar surface area <140 Ȧ and Nrot <10) without toxicity or mutagenic effects.Conclusion: The molecular docking and pharmacokinetic information of herbal derivatives obtained in this study can be utilized to develop novel MGAM inhibitors having antidiabetic potential with better pharmacokinetic and pharmacodynamics profile.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Belinda D. P. M. Ratu ◽  
Widdhi Bodhi ◽  
Fona Budiarso ◽  
Billy J. Kepel ◽  
. Fatimawali ◽  
...  

Abstract: COVID-19 is a new disease. Many people feel the impact of this disease. There is no definite cure for COVID-19, so many people use traditional medicine to ward off COVID-19, including ginger. This study aims to determine whether there is an interaction between compounds in ginger (gingerol and zingiberol) and the COVID-19’s main protease (6LU7). This study uses a molecular docking method using 4 main applications, namely Autodock Tools, Autodock Vina, Biovia Discovery Studio 2020, and Open Babel GUI. The samples used were gingerol and zingiberol compounds in ginger plants downloaded from Pubchem. The data used in this study used Mendeley, Clinical Key, and PubMed database. The study showed that almost all of the amino acid residues in the gingerol compound acted on the 6LU7 active site, whereas the zingiberol did not. The results of the binding affinity of ginger compounds, both gingerol and zingiberol, do not exceed the binding affinity of remdesivir, a drug that is widely researched as a COVID-19 handling drug. In conclusion, gingerol and zingiberol compounds in ginger can’t be considered as COVID-19’s treatment.Keywords: molecular docking, gingerol, zingiberol Abstrak: COVID-19 merupakan sebuah penyakit yang baru. Banyak masyarakat yang merasakan dampak dari penyakit ini. Belum ada pengobatan pasti untuk menyembuhkan COVID-19, sehingga banyak masyarakat yang menggunakan pengobatan tradisional untuk menangkal COVID-19, termasuk jahe. Penelitian ini bertujuan untuk mengetahui apakah ada interaksi antara senyawa pada jahe (gingerol dan zingiberol) dengan main protease COVID-19 (6LU7). Penelitian ini menggunakan metode molecular docking dengan menggunakan 4 aplikasi utama, yaitu Autodock Tools, Autodock Vina, Biovia Discovery Studio 2020, dan Open Babel GUI. Sampel yang digunakan yaitu senyawa gingerol dan zingiberol pada tanaman jahe yang diunduh di Pubchem. Data yang digunakan dalam penelitian ini menggunakan database Mendeley, Clinical Key, dan PubMed. Penelitian menunjukkan bahwa hampir semua residu asam amino pada senyawa gingerol bekerja pada sisi aktif 6LU7, sedangkan tidak demikian pada zingiberol. Hasil binding affinity senyawa jahe, baik gingerol maupun zingiberol tidak  melebihi binding affinity remdesivir, obat yang banyak diteliti sebagai obat penanganan COVID-19. Sebagai simpulan, senyawa gingerol dan zingiberol pada tanaman jahe tidak dapat dipertimbangkan sebagai penanganan COVID-19Kata Kunci: molecular docking, gingerol, zingiberol


Sign in / Sign up

Export Citation Format

Share Document