A combined drug discovery strategy based on machine learning and molecular docking

2019 ◽  
Vol 93 (5) ◽  
pp. 685-699 ◽  
Author(s):  
Yanmin Zhang ◽  
Yuchen Wang ◽  
Weineng Zhou ◽  
Yuanrong Fan ◽  
Junnan Zhao ◽  
...  
2019 ◽  
Vol 18 (03) ◽  
pp. 1920001 ◽  
Author(s):  
Chung F. Wong

Ensemble docking has provided an inexpensive method to account for receptor flexibility in molecular docking. However, it is still unclear how best to use the docking scores from multiple structures to classify compounds into actives and inactives. Previous studies have also found that the performance of classification could decrease rather than increase with the number of structures included in the ensemble. Machine learning could help to alleviate these problems.


2020 ◽  
Author(s):  
Azhagiya Singam Ettayapuram Ramaprasad ◽  
Phum Tachachartvanich ◽  
Denis Fourches ◽  
Anatoly Soshilov ◽  
Jennifer C.Y. Hsieh ◽  
...  

Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) pose a substantial threat as endocrine disruptors, and thus early identification of those that may interact with steroid hormone receptors, such as the androgen receptor (AR), is critical. In this study we screened 5,206 PFASs from the CompTox database against the different binding sites on the AR using both molecular docking and machine learning techniques. We developed support vector machine models trained on Tox21 data to classify the active and inactive PFASs for AR using different chemical fingerprints as features. The maximum accuracy was 95.01% and Matthew’s correlation coefficient (MCC) was 0.76 respectively, based on MACCS fingerprints (MACCSFP). The combination of docking-based screening and machine learning models identified 29 PFASs that have strong potential for activity against the AR and should be considered priority chemicals for biological toxicity testing.


2020 ◽  
Author(s):  
Mohammad Seyedhamzeh ◽  
Bahareh Farasati Far ◽  
Mehdi Shafiee Ardestani ◽  
Shahrzad Javanshir ◽  
Fatemeh Aliabadi ◽  
...  

Studies of coronavirus disease 2019 (COVID-19) as a current global health problem shown the initial plasma levels of most pro-inflammatory cytokines increased during the infection, which leads to patient countless complications. Previous studies also demonstrated that the metronidazole (MTZ) administration reduced related cytokines and improved treatment in patients. However, the effect of this drug on cytokines has not been determined. In the present study, the interaction of MTZ with cytokines was investigated using molecular docking as one of the principal methods in drug discovery and design. According to the obtained results, the IL12-metronidazole complex is more stable than other cytokines, and an increase in the surface and volume leads to prevent to bind to receptors. Moreover, ligand-based virtual screening of several libraries showed metronidazole phosphate, metronidazole benzoate, 1-[1-(2-Hydroxyethyl)-5- nitroimidazol-2-yl]-N-methylmethanimine oxide, acyclovir, and tetrahydrobiopterin (THB or BH4) like MTZ by changing the surface and volume prevents binding IL-12 to the receptor. Finally, the inhibition of the active sites of IL-12 occurred by modifying the position of the methyl and hydroxyl functional groups in MTZ. <br>


2018 ◽  
Vol 69 (4) ◽  
pp. 815-822 ◽  
Author(s):  
Lucia Pintilie ◽  
Amalia Stefaniu ◽  
Alina Ioana Nicu ◽  
Maria Maganu ◽  
Miron Teodor Caproiu

A new series of fluoroquinolone compounds have been obtained by Gould-Jacobs method. The compounds have been characterized by physic-chemical methods (elemental analysis, FTIR, NMR, UV-Vis) and by antimicrobial activity against Gram-positive and Gram-negative microorganisms. For the synthesized compounds have been performed calculations of characteristics and molecular properties, using Spartan�14 Software from Wavefunction, Inc. Irvine, CA. and molecular docking studies using CLC Drug Discovery Workbench 2.4 software, to identify and visualize the most likely interaction ligand (fluoroquinolone) with the receptor protein.


2017 ◽  
Vol 24 (39) ◽  
Author(s):  
Santiago Vilar ◽  
Eduardo Sobarzo-Sanchez ◽  
Lourdes Santana ◽  
Eugenio Uriarte

2020 ◽  
Vol 20 (14) ◽  
pp. 1375-1388 ◽  
Author(s):  
Patnala Ganga Raju Achary

The scientists, and the researchers around the globe generate tremendous amount of information everyday; for instance, so far more than 74 million molecules are registered in Chemical Abstract Services. According to a recent study, at present we have around 1060 molecules, which are classified as new drug-like molecules. The library of such molecules is now considered as ‘dark chemical space’ or ‘dark chemistry.’ Now, in order to explore such hidden molecules scientifically, a good number of live and updated databases (protein, cell, tissues, structure, drugs, etc.) are available today. The synchronization of the three different sciences: ‘genomics’, proteomics and ‘in-silico simulation’ will revolutionize the process of drug discovery. The screening of a sizable number of drugs like molecules is a challenge and it must be treated in an efficient manner. Virtual screening (VS) is an important computational tool in the drug discovery process; however, experimental verification of the drugs also equally important for the drug development process. The quantitative structure-activity relationship (QSAR) analysis is one of the machine learning technique, which is extensively used in VS techniques. QSAR is well-known for its high and fast throughput screening with a satisfactory hit rate. The QSAR model building involves (i) chemo-genomics data collection from a database or literature (ii) Calculation of right descriptors from molecular representation (iii) establishing a relationship (model) between biological activity and the selected descriptors (iv) application of QSAR model to predict the biological property for the molecules. All the hits obtained by the VS technique needs to be experimentally verified. The present mini-review highlights: the web-based machine learning tools, the role of QSAR in VS techniques, successful applications of QSAR based VS leading to the drug discovery and advantages and challenges of QSAR.


2019 ◽  
Vol 19 (1) ◽  
pp. 4-16 ◽  
Author(s):  
Qihui Wu ◽  
Hanzhong Ke ◽  
Dongli Li ◽  
Qi Wang ◽  
Jiansong Fang ◽  
...  

Over the past decades, peptide as a therapeutic candidate has received increasing attention in drug discovery, especially for antimicrobial peptides (AMPs), anticancer peptides (ACPs) and antiinflammatory peptides (AIPs). It is considered that the peptides can regulate various complex diseases which are previously untouchable. In recent years, the critical problem of antimicrobial resistance drives the pharmaceutical industry to look for new therapeutic agents. Compared to organic small drugs, peptide- based therapy exhibits high specificity and minimal toxicity. Thus, peptides are widely recruited in the design and discovery of new potent drugs. Currently, large-scale screening of peptide activity with traditional approaches is costly, time-consuming and labor-intensive. Hence, in silico methods, mainly machine learning approaches, for their accuracy and effectiveness, have been introduced to predict the peptide activity. In this review, we document the recent progress in machine learning-based prediction of peptides which will be of great benefit to the discovery of potential active AMPs, ACPs and AIPs.


2021 ◽  
pp. 247255522110281
Author(s):  
August Allen ◽  
Lina Nilsson

In this perspective, the authors paint a vision for industrializing drug discovery with an “atoms and bits” approach. This approach leverages advancements in machine learning, automation, and biological tools to create a platform for drug discovery that de-specializes the output of insights and generates feedback loops to iterate on each success and failure. Recursion Pharmaceuticals, where the authors work, is provided as an example of how one company is attempting to achieve this vision.


Sign in / Sign up

Export Citation Format

Share Document