scholarly journals Using multi‐scale spatially explicit frameworks to understand the relationship between functional diversity and species richness

Ecography ◽  
2022 ◽  
Author(s):  
Andrés Felipe Suárez‐Castro ◽  
Maia Raymundo ◽  
Malyon Bimler ◽  
Margaret M. Mayfield
2020 ◽  
Author(s):  
Benedicto Vargas-Larreta ◽  
Jorge Omar Lopez Martinez ◽  
Edgar J. González ◽  
Jose Javier Corral-Rivas ◽  
Francisco Javier Hernández

Abstract Background: Studies on the relationship between biodiversity and ecosystem productivity have suggested that species richness and functional diversity are the main drivers of ecosystem processes. Several patterns on this relationship have been found, including positive, unimodal, negative, and neutral trends, keeping the issue controversial. In this study, taxonomic diversity and functional diversity as drivers of above-ground biomass (AGB) were comparated, and the mechanisms that influence biomass production were investigated by testing the complementarity and the mass-ratio hypotheses.Methods: Using data from 414 permanent sample plots, covering 23% of temperate forest in the Sierra Madre Oriental (México). We estimated the above-gound biomass (AGB), taxonomic and functional diversity indices, as well as community weighted mean values (CWM) for three functional trais (maximum height, leaf size and wood density) for trees ≥7.5 cm d.b.h., in managed and unmanaged stands. To compare taxonomic diversity differences between managed and unmanaged stands we carried out a rarefaction analysis. Furthermore, we evaluated the relationship between AGB and taxonomic and functional diversity metrics, as well as CWM traits throught spatial autoregressive models.Results: We found a hump-shaped relationship between AGB and species richness in managed and unmanaged forests. CMW of maximum height was the most important predictor of AGB in both stands, which suggested that the mechanism underlaying the AGB-diversity relationship is the dominance of some highly productive species, supporting the mass-ratio hypothesis. Above-ground biomass was significantly correlated with three of the five functional diversity metrics, CWM maximum height and species richness. Our results show the importance of take into account spatial autocorrelation in the construction of predictive models to avoid spurious patterns in the AGB-diversity relationship.Conclusion: Species richness, maximum height, functional richness, functional dispersion and RaoQ indices relate with above-ground biomass production in temperate mixed-species and uneven-aged forests of northern Mexico. These forests show a hump-shaped AGB-species richness relationship. Functional diversity explains better AGB production than classical taxonomic diversity. Community weighted mean traits provide key information to explain stand biomass in these forests, where maximum tree height seems to be a more suitable trait for understanding the biomass accumulation process in these ecosystems. Although the impact of forest management on biodiversity is still debated, it has not changed the AGB-diversity relationships in the forests of the Sierra Madre Occidental, Mexico.


2021 ◽  
Vol 9 (2) ◽  
pp. 381
Author(s):  
Robert Starke ◽  
Maysa Lima Parente Fernandes ◽  
Daniel Kumazawa Morais ◽  
Iñaki Odriozola ◽  
Petr Baldrian ◽  
...  

Revealing the relationship between taxonomy and function in microbiomes is critical to discover their contribution to ecosystem functioning. However, while the relationship between taxonomic and functional diversity in bacteria and fungi is known, this is not the case for archaea. Here, we used a meta-analysis of 417 completely annotated extant and taxonomically unique archaeal genomes to predict the extent of microbiome functionality on Earth contained within archaeal genomes using accumulation curves of all known level 3 functions of KEGG Orthology. We found that intergenome redundancy as functions present in multiple genomes was inversely related to intragenome redundancy as multiple copies of a gene in one genome, implying the tradeoff between additional copies of functionally important genes or a higher number of different genes. A logarithmic model described the relationship between functional diversity and species richness better than both the unsaturated and the saturated model, which suggests a limited total number of archaeal functions in contrast to the sheer unlimited potential of bacteria and fungi. Using the global archaeal species richness estimate of 13,159, the logarithmic model predicted 4164.1 ± 2.9 KEGG level 3 functions. The non-parametric bootstrap estimate yielded a lower bound of 2994 ± 57 KEGG level 3 functions. Our approach not only highlighted similarities in functional redundancy but also the difference in functional potential of archaea compared to other domains of life.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Benedicto Vargas-Larreta ◽  
Jorge Omar López-Martínez ◽  
Edgar J. González ◽  
José Javier Corral-Rivas ◽  
Francisco Javier Hernández

Abstract Background Studies on the relationship between biodiversity and ecosystem productivity have suggested that species richness and functional diversity are the main drivers of ecosystem processes. Several patterns on this relationship have been found, including positive, unimodal, negative, and neutral trends, keeping the issue controversial. In this study, taxonomic diversity and functional diversity as drivers of above-ground biomass (AGB) were compared, and the mechanisms that influence biomass production were investigated by testing the complementarity and the mass-ratio hypotheses. Methods Using data from 414 permanent sample plots, covering 23% of temperate forest in the Sierra Madre Oriental (México), we estimated the above-gound biomass (AGB), taxonomic and functional diversity indices, as well as community weighted mean values (CWM) for three functional traits (maximum height, leaf size and wood density) for trees ≥7.5 cm DBH, in managed and unmanaged stands. To compare taxonomic diversity differences between managed and unmanaged stands we carried out a rarefaction analysis. Furthermore, we evaluated the relationship between AGB and taxonomic and functional diversity metrics, as well as CWM traits throught spatial autoregressive models. Results We found a hump-shaped relationship between AGB and species richness in managed and unmanaged forests. CMW of maximum height was the most important predictor of AGB in both stands, which suggested that the mechanism underlaying the AGB-diversity relationship is the dominance of some highly productive species, supporting the mass-ratio hypothesis. Above-ground biomass was significantly correlated with three of the five functional diversity metrics, CWM maximum height and species richness. Our results show the importance of taking into account spatial autocorrelation in the construction of predictive models to avoid spurious patterns in the AGB-diversity relationship. Conclusion Species richness, maximum height, functional richness, functional dispersion and RaoQ indices relate with above-ground biomass production in temperate mixed-species and uneven-aged forests of northern Mexico. These forests show a hump-shaped AGB-species richness relationship. Functional diversity explains better AGB production than classical taxonomic diversity. Community weighted mean traits provide key information to explain stand biomass in these forests, where maximum tree height seems to be a more suitable trait for understanding the biomass accumulation process in these ecosystems. Although the impact of forest management on biodiversity is still debated, it has not changed the AGB-diversity relationships in the forests of the Sierra Madre Occidental, Mexico.


2020 ◽  
Author(s):  
Benedicto Vargas-Larreta ◽  
Jorge Omar Lopez Martinez ◽  
Edgar J. González ◽  
Jose Javier Corral-Rivas ◽  
Francisco Javier Hernández

Abstract Background: Studies on the relationship between biodiversity and ecosystem productivity have suggested that species richness and functional diversity are the main drivers of ecosystem processes. Several patterns on this relationship have been found, including positive, unimodal, negative, and neutral trends, keeping the issue controversial. In this study, taxonomic diversity and functional diversity as drivers of above-ground biomass (AGB) were comparated, and the mechanisms that influence biomass production were investigated by testing the complementarity and the mass-ratio hypotheses. Methods: Using data from 414 permanent sample plots, covering 23% of temperate forest in the Sierra Madre Oriental (México). We estimated the above-gound biomass (AGB), taxonomic and functional diversity indices, as well as community weighted mean values (CWM) for three functional trais (maximum height, leaf size and wood density) for trees ≥7.5 cm d.b.h., in managed and unmanaged stands. To compare taxonomic diversity differences between managed and unmanaged stands we carried out a rarefaction analysis. Furthermore, we evaluated the relationship between AGB and taxonomic and functional diversity metrics, as well as CWM traits throught spatial autoregressive models. Results: We found a hump-shaped relationship between AGB and species richness in managed and unmanaged forests. CMW of maximum height was the most important predictor of AGB in both stands, which suggested that the mechanism underlaying the AGB-diversity relationship is the dominance of some highly productive species, supporting the mass-ratio hypothesis. Above-ground biomass was significantly correlated with three of the five functional diversity metrics, CWM maximum height and species richness. Our results show the importance of take into account spatial autocorrelation in the construction of predictive models to avoid spurious patterns in the AGB-diversity relationship. Conclusion: Species richness, maximum height, functional richness, functional dispersion and RaoQ indices relate with above-ground biomass production in temperate mixed-species and uneven-aged forests of northern Mexico. These forests show a hump-shaped AGB-species richness relationship. Functional diversity explains better AGB production than classical taxonomic diversity. Community weighted mean traits provide key information to explain stand biomass in these forests, where maximum tree height seems to be a more suitable trait for understanding the biomass accumulation process in these ecosystems. Although the impact of forest management on biodiversity is still debated, it has not changed the AGB-diversity relationships in the forests of the Sierra Madre Occidental, Mexico.


Sociobiology ◽  
2020 ◽  
Vol 67 (1) ◽  
pp. 33
Author(s):  
Andressa Silvana Oliveira de Menezes ◽  
Fernando Augusto Schmidt

In this study, we investigated the mechanisms behind species coexistence and the relationships between functional diversity and species richness in ant assemblages in both forest and pasture habitats in the southwestern Brazilian Amazon. We addressed the specific question: What is the primary mechanism for species coexistence in forest and pasture habitats? According to the identified mechanism in each habitat, we had the following alternative expectations: (i) niche partitioning – we expected to observe a linear positive relationship between functional diversity and species richness, indicating a complementary relationship; or (ii) niche filtering – a positive constant asymptotic relation between functional diversity and species richness, indicating a functional redundancy relationship. In total, we sampled 91 ant species, 82 species in a forest habitat and 16, in a pasture habitat. In the forest habitat we identified niche filtering as the structuring mechanism of the ant assemblage, but we were unable to identify a clear mechanism in the pasture habitat. Although the relationship between functional diversity and species richness was positive in both habitats, the relationship was weaker in the forest habitat, indicating a greater functional redundancy among the ant species in this habitat. Our results reinforce the divergence of species coexistence mechanisms and ant assemblage structures in both natural and human-modified habitats in the Southwestern Brazilian Amazon.


2020 ◽  
Author(s):  
Robert Starke ◽  
Maysa Lima Parente Fernandes ◽  
Daniel Kumazawa Morais ◽  
Iñaki Odriozola ◽  
Nico Jehmlich ◽  
...  

AbstractUnveiling the relationship between taxonomy and function in microbiomes is crucial to determine their contribution to ecosystem functioning. However, while the relationship between taxonomic and functional diversity in bacteria and fungi was reported, this is not the case for archaea. Here, we used a meta-analysis of completely annotated extant genomes of 417 taxonomically unique archaeal species to describe intergenome and intragenome redundancy of functions and to predict the extent of microbiome functionality on Earth contained within archaeal genomes using accumulation curves of all known functions from the level 3 of KEGG Orthology. We found that intergenome redundancy as functions present in multiple genomes was inversely related to intragenome redundancy as multiple copies of a gene in one genome, implying the trade of between additional copies of functionally important genes or a higher number of different genes. A logarithmic model described the relationship between functional diversity and species richness better than both the unsaturated and the saturated model, which suggests a limited total number of archaeal functions in contrast to the potential of bacteria and fungi. Using a global archaeal species richness estimate of 13,159, the logarithmic model predicts a total of 4,164.1 ±2.9 KEGG level 3 functions while the non-parametric bootstrap estimate yields a lower bound of 2,994 ±57 KEGG level 3 functions. Our approach not only highlights similarities in functional redundancy but also the difference in functional potential of archaea compared to other domains of life.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 275
Author(s):  
Mariana A. Tsianou ◽  
Maria Lazarina ◽  
Danai-Eleni Michailidou ◽  
Aristi Andrikou-Charitidou ◽  
Stefanos P. Sgardelis ◽  
...  

The ongoing biodiversity crisis reinforces the urgent need to unravel diversity patterns and the underlying processes shaping them. Although taxonomic diversity has been extensively studied and is considered the common currency, simultaneously conserving other facets of diversity (e.g., functional diversity) is critical to ensure ecosystem functioning and the provision of ecosystem services. Here, we explored the effect of key climatic factors (temperature, precipitation, temperature seasonality, and precipitation seasonality) and factors reflecting human pressures (agricultural land, urban land, land-cover diversity, and human population density) on the functional diversity (functional richness and Rao’s quadratic entropy) and species richness of amphibians (68 species), reptiles (107 species), and mammals (176 species) in Europe. We explored the relationship between different predictors and diversity metrics using generalized additive mixed model analysis, to capture non-linear relationships and to account for spatial autocorrelation. We found that at this broad continental spatial scale, climatic variables exerted a significant effect on the functional diversity and species richness of all taxa. On the other hand, variables reflecting human pressures contributed significantly in the models even though their explanatory power was lower compared to climatic variables. In most cases, functional richness and Rao’s quadratic entropy responded similarly to climate and human pressures. In conclusion, climate is the most influential factor in shaping both the functional diversity and species richness patterns of amphibians, reptiles, and mammals in Europe. However, incorporating factors reflecting human pressures complementary to climate could be conducive to us understanding the drivers of functional diversity and richness patterns.


Oecologia ◽  
2021 ◽  
Vol 195 (1) ◽  
pp. 213-223
Author(s):  
Mark A. Lee ◽  
Grace Burger ◽  
Emma R. Green ◽  
Pepijn W. Kooij

AbstractPlant and animal community composition changes at higher elevations on mountains. Plant and animal species richness generally declines with elevation, but the shape of the relationship differs between taxa. There are several proposed mechanisms, including the productivity hypotheses; that declines in available plant biomass confers fewer resources to consumers, thus supporting fewer species. We investigated resource availability as we ascended three aspects of Helvellyn mountain, UK, measuring several plant nutritive metrics, plant species richness and biomass. We observed a linear decline in plant species richness as we ascended the mountain but there was a unimodal relationship between plant biomass and elevation. Generally, the highest biomass values at mid-elevations were associated with the lowest nutritive values, except mineral contents which declined with elevation. Intra-specific and inter-specific increases in nutritive values nearer the top and bottom of the mountain indicated that physiological, phenological and compositional mechanisms may have played a role. The shape of the relationship between resource availability and elevation was different depending on the metric. Many consumers actively select or avoid plants based on their nutritive values and the abundances of consumer taxa vary in their relationships with elevation. Consideration of multiple nutritive metrics and of the nutritional requirements of the consumer may provide a greater understanding of changes to plant and animal communities at higher elevations. We propose a novel hypothesis for explaining elevational diversity gradients, which warrants further study; the ‘nutritional complexity hypothesis’, where consumer species coexist due to greater variation in the nutritional chemistry of plants.


Sign in / Sign up

Export Citation Format

Share Document